Add a new helper to avoid calling io::Error::kind
On `cfg(unix)`, `Error::kind` emits an enormous jump table that LLVM seems unable to optimize out. I don't really understand why, but see for yourself: https://godbolt.org/z/17hY496KG
This change lets us check for `ErrorKind::Interrupted` without going through a big match. I've checked the codegen locally, and it has the desired effect on the codegen for `BufReader::read_exact`.
kmc-solid: Import `std::sync::PoisonError` in `std::sys::solid::os`
Follow-up to #114968. Fixes a missing import in [`*-kmc-solid_*`](https://doc.rust-lang.org/nightly/rustc/platform-support/kmc-solid.html) Tier 3 targets.
```
error[E0433]: failed to resolve: use of undeclared type `PoisonError`
C:\Users\xxxxx\.rustup\toolchains\nightly-2023-08-23-x86_64-pc-windows-gnu\lib\rustlib\src\rust\library\std\src\sys\solid\os.rs(85,36)
|
85 | ENV_LOCK.read().unwrap_or_else(PoisonError::into_inner)
| ^^^^^^^^^^^ use of undeclared type `PoisonError`
|
```
Fix UB in `std::sys::os::getenv()`
Fixes#114949.
Reduced the loops to 1k iterations (100k was taking way too long), Miri no longer shows any UB.
`@rustbot` label +A-process +C-bug +I-unsound +O-unix
rustdoc: Add lint `redundant_explicit_links`
Closes#87799.
- Lint warns by default
- Reworks link parser to cache original link's display text
r? `@jyn514`
Usage zero as language id for `FormatMessageW()`
This switches the language selection from using system language (note that this might be different than application language, typically stored as thread ui language) to use `FormatMessageW` default search strategy, which is `neutral` first, then `thread ui lang`, then `user language`, then `system language`, then `English`. (See https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessagew)
This allows the Rust program to take more control of `std::io::Error`'s message field, by setting up thread ui language themselves before hand (which many programs already do).
Increase clarity about Hash - Eq consistency in HashMap and HashSet docs
As discussed [here](https://users.rust-lang.org/t/what-hapens-if-hash-and-partialeq-dont-match-when-using-hashmap/98052/13) the description of logic errors in `HashMap` and `HashSet` does not explicitly apply to
```text
k1 == k2 -> hash(k1) == hash(k2)
```
but this is likely what is intended.
This PR is a small doc change to correct this.
r? rust-lang/libs
Add `modulo` and `mod` as doc aliases for `rem_euclid`.
When I was learning Rust I looked for “a modulo function” and couldn’t find one, so thought I had to write my own; it wasn't at all obvious that a function with “rem” in the name was the function I wanted. Hopefully this will save the next learner from that.
However, it does have the disadvantage that the top results in rustdoc for “mod” are now these aliases instead of the Rust keyword, which probably isn't ideal.
Add doc aliases for trigonometry and other f32,f64 methods.
These are common alternate names, usually a less-abbreviated form, for the operation; e.g. `arctan` instead of `atan`. Prompted by <https://users.rust-lang.org/t/64-bit-trigonometry/98599>
When I was learning Rust I looked for “a modulo function” and couldn’t
find one, so thought I had to write my own; it wasn't at all obvious
that a function with “rem” in the name was the function I wanted.
Hopefully this will save the next learner from that.
However, it does have the disadvantage that the top results in rustdoc
for “mod” are now these aliases instead of the Rust keyword, which
probably isn't ideal.
Synchronize with all calls to `unpark` in id-based thread parker
[The documentation for `thread::park`](https://doc.rust-lang.org/nightly/std/thread/fn.park.html#memory-ordering) guarantees that "park synchronizes-with all prior unpark operations". In the id-based thread parking implementation, this is not implemented correctly, as the state variable is reset with a simple store, so there will not be a *synchronizes-with* edge if an `unpark` happens just before the reset. This PR corrects this, replacing the load-check-reset sequence with a single `compare_exchange`.
Partially revert #107200
`Ok(0)` is indeed something the caller may interpret as an error, but
that's the *correct* thing to return if the writer can't accept any more
bytes.
Improve docs for impl Default for ExitStatus
This addresses a review comment in #106425 (which is on the way to being merged I think).
Some of the other followup work is more complicated so I'm going to do individual MRs.
~~Note this branch is on top of #106425~~
std: add some missing repr(transparent)
For some types we don't want to stably guarantee this, so hide the `repr` from rustdoc. This nice approach was suggested by `@thomcc.`
add a csky-unknown-linux-gnuabiv2 target
This is the rustc side changes to support csky based Linux target(`csky-unknown-linux-gnuabiv2`).
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I pledge to do my best maintaining it.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
This `csky` section is the arch name and the `unknown-linux` section is the same as other linux target, and `gnuabiv2` is from the cross-compile toolchain of `gcc`
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I think the explanation in platform support doc is enough to make this aspect clear.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
It's using open source tools only.
> The target must not introduce license incompatibilities.
No new license
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies/features required.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
As previously said it's using open source tools only.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
There are no such terms present/
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
I'm not the reviewer here.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
I'm not the reviewer here.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
It supports for std
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the documentation, and I think it's clear.
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
I believe I didn't break any other target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think there are no such problems in this PR.
* remove `impl Provider for Error`
* rename `Demand` to `Request`
* update docstrings to focus on the conceptual API provided by `Request`
* move `core::any::{request_ref, request_value}` functions into `core::error`
* move `core::any::tag`, `core::any::Request`, an `core::any::TaggedOption` into `core::error`
* replace `provide_any` feature name w/ `error_generic_member_access`
* move `core::error::request_{ref,value} tests into core::tests::error module
* update unit and doc tests