Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
Added allow(non_camel_case_types) to librustc where necesary
Tried to fix problems with non_camel_case_types outside rustc
fixed failing tests
Docs updated
Moved #[allow(non_camel_case_types)] a level higher.
markdown.rs reverted
Fixed timer that was failing tests
Fixed another timer
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
Function parameters that are to be passed by value but don't fit into a
single register are currently passed by creating a copy on the stack and
passing a pointer to that copy to the callee. Since the copy is made
just for the function call, there are no aliases.
For example, this sometimes allows LLVM to eliminate unnecessary calls
to drop glue. Given
````rust
struct Foo {
a: int,
b: Option<~str>,
}
extern {
fn eat(eat: Option<~str>);
}
pub fn foo(v: Foo) {
match v {
Foo { a: _, b } => unsafe { eat(b) }
}
}
````
LLVM currently can't eliminate the drop call for the string, because it
only sees a _pointer_ to Foo, for which it has to expect an alias. So we
get:
````llvm
; Function Attrs: uwtable
define void @_ZN3foo20h9f32c90ae7201edbxaa4v0.0E(%struct.Foo* nocapture) unnamed_addr #0 {
"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit":
%1 = getelementptr inbounds %struct.Foo* %0, i64 0, i32 1, i32 0
%2 = load { i64, i64, [0 x i8] }** %1, align 8
store { i64, i64, [0 x i8] }* null, { i64, i64, [0 x i8] }** %1, align 8
%3 = ptrtoint { i64, i64, [0 x i8] }* %2 to i64
%.fca.0.insert = insertvalue { i64 } undef, i64 %3, 0
tail call void @eat({ i64 } %.fca.0.insert)
%4 = load { i64, i64, [0 x i8] }** %1, align 8
%5 = icmp eq { i64, i64, [0 x i8] }* %4, null
br i1 %5, label %_ZN3Foo9glue_drop17hf611996539d3036fE.exit, label %"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i"
"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i": ; preds = %"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit"
%6 = bitcast { i64, i64, [0 x i8] }* %4 to i8*
tail call void @free(i8* %6) #1
br label %_ZN3Foo9glue_drop17hf611996539d3036fE.exit
_ZN3Foo9glue_drop17hf611996539d3036fE.exit: ; preds = %"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit", %"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i"
ret void
}
````
But with the `noalias` attribute, it can safely optimize that to:
````llvm
define void @_ZN3foo20hd28431f929f0d6c4xaa4v0.0E(%struct.Foo* noalias nocapture) unnamed_addr #0 {
_ZN3Foo9glue_drop17he9afbc09d4e9c851E.exit:
%1 = getelementptr inbounds %struct.Foo* %0, i64 0, i32 1, i32 0
%2 = load { i64, i64, [0 x i8] }** %1, align 8
store { i64, i64, [0 x i8] }* null, { i64, i64, [0 x i8] }** %1, align 8
%3 = ptrtoint { i64, i64, [0 x i8] }* %2 to i64
%.fca.0.insert = insertvalue { i64 } undef, i64 %3, 0
tail call void @eat({ i64 } %.fca.0.insert)
ret void
}
````
This patch replaces all `crate` usage with `krate` before introducing the
new keyword. This ensures that after introducing the keyword, there
won't be any compilation errors.
krate might not be the most expressive substitution for crate but it's a
very close abbreviation for it. `module` was already used in several
places already.
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
For the purpose of deciding whether to truncate or extend the right hand side of bit shifts, use the size of the element type for SIMD vector types.
Fix#11900.
In line with the dissolution of libextra - #8784 - moves arena to its own library libarena.
Changes based on PR #11787. Updates .gitignore to ignore doc/arena.
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
The old method of serializing the AST gives totally bogus spans if the
expansion of an imported macro causes compilation errors. The best
solution seems to be to serialize the actual textual macro definition
and load it the same way the std-macros are. I'm not totally confident
that getting the source from the CodeMap will always do the right thing,
but it seems to work in simple cases.
NodeIds are sequential integers starting at zero, so we can achieve some
memory savings by just storing the items all in a line in a vector.
The occupancy for typical crates seems to be 75-80%, so we're already
more efficient than a HashMap (maximum occupancy 75%), not even counting
the extra book-keeping that HashMap does.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533
Unique pointers and vectors currently contain a reference counting
header when containing a managed pointer.
This `{ ref_count, type_desc, prev, next }` header is not necessary and
not a sensible foundation for tracing. It adds needless complexity to
library code and is responsible for breakage in places where the branch
has been left out.
The `borrow_offset` field can now be removed from `TyDesc` along with
the associated handling in the compiler.
Closes#9510Closes#11533