This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all options
stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the directory of
the crate file.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This makes pretty print tests that have aux crates work correctly on Android.
Without they generate errors ICEs about incorrect node ids. Not sure why.
The new macro loading infrastructure needs the ability to force a
procedural-macro crate to be built with the host architecture rather than the
target architecture (because the compiler is just about to dlopen it).
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
The new macro loading infrastructure needs the ability to force a
procedural-macro crate to be built with the host architecture rather than the
target architecture (because the compiler is just about to dlopen it).
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
* vec::raw::to_ptr is gone
* Pausible => Pausable
* Removing @
* Calling the main task "<main>"
* Removing unused imports
* Removing unused mut
* Bringing some libextra tests up to date
* Allowing compiletest to work at stage0
* Fixing the bootstrap-from-c rmake tests
* assert => rtassert in a few cases
* printing to stderr instead of stdout in fail!()
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
The problem was that std::run::Process::new() was unwrap()ing the result
of std::io::process::Process::new(), which returns None in the case
where the io_error condition is raised to signal failure to start the
process.
Have std::run::Process::new() similarly return an Option<run::Process>
to reflect the fact that a subprocess might have failed to start. Update
utility functions run::process_status() and run::process_output() to
return Option<ProcessExit> and Option<ProcessOutput>, respectively.
Various parts of librustc and librustpkg needed to be updated to reflect
these API changes.
closes#10754
- `Buffer.lines()` returns `LineIterator` which yields line using
`.read_line()`.
- `Reader.bytes()` now takes `&mut self` instead of `self`.
- `Reader.read_until()` swallows `EndOfFile`. This also affects
`.read_line()`.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
This function had type &[u8] -> ~str, i.e. it allocates a string
internally, even though the non-allocating version that take &[u8] ->
&str and ~[u8] -> ~str are all that is necessary in most circumstances.
This renames to_str_ascii to as_str_ascii and makes it non-copying,
which is possible now that strings no longer have a hidden extra
byte/null terminator.
Fixes#6120.
This renames the `file` module to `fs` because that more accurately describes
its current purpose (manipulating the filesystem, not just files).
Additionally, this adds an UnstableFileStat structure as a nested structure of
FileStat to signify that the fields should not be depended on. The structure is
currently flagged with #[unstable], but it's unlikely that it has much meaning.
Closes#10241
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
Allows an enum with a discriminant to use any of the primitive integer types to store it. By default the smallest usable type is chosen, but this can be overridden with an attribute: `#[repr(int)]` etc., or `#[repr(C)]` to match the target's C ABI for the equivalent C enum.
Also adds a lint pass for using non-FFI safe enums in extern declarations, checks that specified discriminants can be stored in the specified type if any, and fixes assorted code that was assuming int.
The variant used in debug-info/method-on-enum.rs had its layout changed
by the smaller discriminant, so that the `u32` no longer overlaps both
of the `u16`s, and thus the debugger is printing partially uninitialized
data when it prints the wrong variant.
Thus, the test runner is modified to accept wildcards (using a string
that should be unlikely to occur literally), to allow for this.