This first patch starts by moving around pieces of state related to
type checking. The goal is to slowly unify the type checking state
into a single typing context. This initial patch moves the
ParameterEnvironment into the InferCtxt and moves shared tables
from Inherited and ty::ctxt into their own struct Tables. This
is the foundational work to refactoring the type checker to
enable future evolution of the language and tooling.
This is one more step towards completing #13231
This series of commits add support for default trait implementations. The changes in this PR don't break existing code and they are expected to preserve the existing behavior in the compiler as far as built-in bounds checks go.
The PR adds negative implementations of `Send`/`Sync` for some types and it removes the special cases for `Send`/`Sync` during the trait obligations checks. That is, it now fully relies on the traits check rather than lang items.
Once this patch lands and a new snapshot is created, it'll be possible to add default impls for `Send` and `Sync` and remove entirely the use of `BuiltinBound::{BoundSend,BoundSync}` for positive implementations as well.
This PR also removes the restriction on negative implementations. That is, it is now possible to add negative implementations for traits other than `Send`/`Sync`
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This makes edge cases in which the `Iterator` trait was not in scope
and/or `Option` or its variants were not in scope work properly.
This breaks code that looks like:
struct MyStruct { ... }
impl MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
for x in MyStruct { ... } { ... }
Change ad-hoc `next` methods like the above to implementations of the
`Iterator` trait. For example:
impl Iterator<int> for MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
Closes#15392.
[breaking-change]
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]
Per @pnkfelix 's suggestion, using a trait to make these
field accesses more readable (and vastly more similar
to the original code.
oops fix new ast_map fix
This change propagates to many locations, but because of the
Macro Exterminator (or, more properly, the invariant that it
protects), macro invocations can't occur downstream of expansion.
This means that in librustc and librustdoc, extracting the
desired field can simply assume that it can't be a macro
invocation. Functions in ast_util abstract over this check.
`#[inline(never)]` is used.
Closes#8958.
This can break some code that relied on the addresses of statics
being distinct; add `#[inline(never)]` to the affected statics.
[breaking-change]
The goal of this refactoring is to make the rustc driver code easier to understand and use. Since this is as close to an API as we have, I think it is important that it is nice. On getting stuck in, I found that there wasn't as much to change as I'd hoped to make the stage... fns easier to use by tools.
This patch only moves code around - mostly just moving code to different files, but a few extracted method refactorings too. To summarise the changes: I added driver::config which handles everything about configuring the compiler. driver::session now just defines and builds session objects. I moved driver code from librustc/lib.rs to librustc/driver/mod.rs so all the code is one place. I extracted methods to make emulating the compiler without being the compiler a little easier. Within the driver directory, I moved code around to more logically fit in the modules.