This PR is an implementation of [RFC 1974] which specifies a new method of
defining a global allocator for a program. This obsoletes the old
`#![allocator]` attribute and also removes support for it.
[RFC 1974]: https://github.com/rust-lang/rfcs/pull/197
The new `#[global_allocator]` attribute solves many issues encountered with the
`#![allocator]` attribute such as composition and restrictions on the crate
graph itself. The compiler now has much more control over the ABI of the
allocator and how it's implemented, allowing much more freedom in terms of how
this feature is implemented.
cc #27389
Just like DragonFlyBSD, using the same symbols as the system allocator will
result in a segmentation fault at runtime due to allocator mismatches.
As such, prefix the jemalloc symbols instead.
As we continue to add more crates to the compiler and use them to implement
various features we want to be sure we're not accidentally expanding the API
surface area of the compiler! To that end this commit adds a new `run-make` test
which will attempt to `extern crate foo` all crates in the sysroot, verifying
that they're all unstable.
This commit discovered that the `std_shim` and `test_shim` crates were
accidentally stable and fixes the situation by deleting those shims. The shims
are no longer necessary due to changes in Cargo that have happened since they
were originally incepted.
We don't want these symbols exported from the standard library, this is
just an internal implementation detail of the standard library
currently.
Closes#34984
This hides symbols from various unstable and implementation-detail
crates of the standard library. Although typically transitive exported
`pub extern` functions are exported from cdylibs, these crates aren't
necessary as they're all implementation details.
Closes#34493
Remove not(stage0) from deny(warnings)
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
Redox Cross Compilation
I will admit - there are things here that I wish I did not have to do. This completes the ability to create a cross compiler from the rust repository for `x86_64-unknown-redox`. I will document this PR with inline comments explaining some things.
[View this gist to see how a cross compiler is built](https://gist.github.com/jackpot51/6680ad973986e84d69c79854249f2b7e)
Prior discussion of a smaller change is here: https://github.com/rust-lang/rust/pull/38366
This commit switches the default build system for Rust from the makefiles to
rustbuild. The rustbuild build system has been in development for almost a year
now and has become quite mature over time. This commit is an implementation of
the proposal on [internals] which slates deletion of the makefiles on
2016-01-02.
[internals]: https://internals.rust-lang.org/t/proposal-for-promoting-rustbuild-to-official-status/4368
This commit also updates various documentation in `README.md`,
`CONTRIBUTING.md`, `src/bootstrap/README.md`, and throughout the source code of
rustbuild itself.
Closes#37858
the .git directory is modified by `bootstrap` when it updates this git
submodule; this triggered rebuilds every time `bootstrap` was called.
likely fixes#38094
This is a hack to support building targets that don't support jemalloc
alongside hosts that do. The jemalloc build is controlled by a feature
of the std crate, and if that feature changes between targets, it
invalidates the fingerprint of std's build script (this is a cargo
bug); so we must ensure that the feature set used by std is the same
across all targets, which means we have to build the alloc_jemalloc
crate for targets like emscripten, even if we don't use it.
This adds support for building the Rust compiler and standard
library for s390x-linux, allowing a full cross-bootstrap sequence
to complete. This includes:
- Makefile/configure changes to allow native s390x builds
- Full Rust compiler support for the s390x C ABI
(only the non-vector ABI is supported at this point)
- Port of the standard library to s390x
- Update the liblibc submodule to a version including s390x support
- Testsuite fixes to allow clean "make check" on s390x
Caveats:
- Resets base cpu to "z10" to bring support in sync with the default
behaviour of other compilers on the platforms. (Usually, upstream
supports all older processors; a distribution build may then chose
to require a more recent base version.) (Also, using zEC12 causes
failures in the valgrind tests since valgrind doesn't fully support
this CPU yet.)
- z13 vector ABI is not yet supported. To ensure compatible code
generation, the -vector feature is passed to LLVM. Note that this
means that even when compiling for z13, no vector instructions
will be used. In the future, support for the vector ABI should be
added (this will require common code support for different ABIs
that need different data_layout strings on the same platform).
- Two test cases are (temporarily) ignored on s390x to allow passing
the test suite. The underlying issues still need to be fixed:
* debuginfo/simd.rs fails because of incorrect debug information.
This seems to be a LLVM bug (also seen with C code).
* run-pass/union/union-basic.rs simply seems to be incorrect for
all big-endian platforms.
Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
The targets are:
- `arm-unknown-linux-musleabi`
- `arm-unknown-linux-musleabihf`
- `armv7-unknown-linux-musleabihf`
These mirror the existing `gnueabi` targets.
All of these targets produce fully static binaries, similar to the
x86 MUSL targets.
For now these targets can only be used with `--rustbuild` builds, as
https://github.com/rust-lang/compiler-rt/pull/22 only made the
necessary compiler-rt changes in the CMake configs, not the plain
GNU Make configs.
I've tested these targets GCC 5.3.0 compiled again musl-1.1.12
(downloaded from http://musl.codu.org/). An example `./configure`
invocation is:
```
./configure \
--enable-rustbuild
--target=arm-unknown-linux-musleabi \
--musl-root="$MUSL_ROOT"
```
where `MUSL_ROOT` points to the `arm-linux-musleabi` prefix.
Usually that path will be of the form
`/foobar/arm-linux-musleabi/arm-linux-musleabi`.
Usually the cross-compile toolchain will live under
`/foobar/arm-linux-musleabi/bin`. That path should either by added
to your `PATH` variable, or you should add a section to your
`config.toml` as follows:
```
[target.arm-unknown-linux-musleabi]
cc = "/foobar/arm-linux-musleabi/bin/arm-linux-musleabi-gcc"
cxx = "/foobar/arm-linux-musleabi/bin/arm-linux-musleabi-g++"
```
As a prerequisite you'll also have to put a cross-compiled static
`libunwind.a` library in `$MUSL_ROOT/lib`. This is similar to [how
the x86_64 MUSL targets are built]
(https://doc.rust-lang.org/book/advanced-linking.html).
This is to pull in changes to support ARM MUSL targets.
This change also commits a couple of other cargo-generated changes
to other dependencies in the various Cargo.toml files.
jemalloc prefixes the symbols by default on Windows so we need to account
for that to avoid link errors such as: `undefined reference to `mallocx'`
when using alloc_jemalloc.