This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
In line with the dissolution of libextra - #8784 - moves arena to its own library libarena.
Changes based on PR #11787. Updates .gitignore to ignore doc/arena.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
It was decided a long, long time ago that libextra should not exist, but rather its modules should be split out into smaller independent libraries maintained outside of the compiler itself. The theory was to use `rustpkg` to manage dependencies in order to move everything out of the compiler, but maintain an ease of usability.
Sadly, the work on `rustpkg` isn't making progress as quickly as expected, but the need for dissolving libextra is becoming more and more pressing. Because of this, we've thought that a good interim solution would be to simply package more libraries with the rust distribution itself. Instead of dissolving libextra into libraries outside of the mozilla/rust repo, we can dissolve libraries into the mozilla/rust repo for now.
Work on this has been excruciatingly painful in the past because the makefiles are completely opaque to all but a few. Adding a new library involved adding about 100 lines spread out across 8 files (incredibly error prone). The first commit of this pull request targets this pain point. It does not rewrite the build system, but rather refactors large portions of it. Afterwards, adding a new library is as simple as modifying 2 lines (easy, right?). The build system automatically keeps track of dependencies between crates (rust *and* native), promotes binaries between stages, tracks dependencies of installed tools, etc, etc.
With this newfound buildsystem power, I chose the `extra::flate` module as the first candidate for removal from libextra. While a small module, this module is relative complex in that is has a C dependency and the compiler requires it (messing with the dependency graph a bit). Albeit I modified more than 2 lines of makefiles to accomodate libflate (the native dependency required 2 extra lines of modifications), but the removal process was easy to do and straightforward.
---
Testing-wise, I've cross-compiled, run tests, built some docs, installed, uninstalled, etc. I'm still working out a few kinks, and I'm sure that there's gonna be built system issues after this, but it should be working well for basic use!
cc #8784
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
Renamed the invert() function in iter.rs to flip().
Also renamed the Invert<T> type to Flip<T>.
Some related code comments changed. Documentation that I could find has
been updated, and all the instances I could locate where the
function/type were called have been updated as well.
`Zero` and `One` have precise definitions in mathematics as the identities of the `Add` and `Mul` operations respectively. As such, types that implement these identities are now also required to implement their respective operator traits. This should reduce their misuse whilst still enabling them to be used in generalized algebraic structures (not just numbers). Existing usages of `#[deriving(Zero)]` in client code could break under these new rules, but this is probably a sign that they should have been using something like `#[deriving(Default)]` in the first place.
For more information regarding the mathematical definitions of the additive and multiplicative identities, see the following Wikipedia articles:
- http://wikipedia.org/wiki/Additive_identity
- http://wikipedia.org/wiki/Multiplicative_identity
Note that for floating point numbers the laws specified in the doc comments of `Zero::zero` and `One::one` may not always hold. This is true however for many other traits currently implemented by floating point numbers. What traits floating point numbers should and should not implement is an open question that is beyond the scope of this pull request.
The implementation of `std::num::pow` has been made more succinct and no longer requires `Clone`. The coverage of the associated unit test has also been increased to test for more combinations of bases, exponents, and expected results.
Ignore all newline characters in Base64 decoder to make it compatible with other Base64 decoders.
Most of the Base64 decoder implementations ignore all newline characters in the input string. There are some examples:
Python:
```python
>>> "
A
Q
=
=
".decode("base64")
'\x01'
```
Ruby:
```ruby
irb(main):001:0> "
A
Q
=
=
".unpack("m")
=> [""]
```
Erlang:
```erlang
1> base64:decode("
A
Q
=
=
").
<<1>>
```
Moreover some Base64 encoders append newline character at the end of the output string by default:
Python:
```python
>>> "".encode("base64")
'AQ==
'
```
Ruby:
```ruby
irb(main):001:0> [""].pack("m")
=> "AQ==
"
```
So I think it's fairly important for Rust Base64 decoder to accept Base64 inputs even with newline characters in the padding.
There was an old and barely used implementation of pow, which expected
both parameters to be uint and required more traits to be implemented.
Since a new implementation for `pow` landed, I'm proposing to remove
this old impl in favor of the new one.
The benchmark shows that the new implementation is faster than the one being removed:
```
test num::bench::bench_pow_function ..bench: 9429 ns/iter (+/- 2055)
test num::bench::bench_pow_with_uint_function ...bench: 28476 ns/iter (+/- 2202)
```
I update the example of json use to the last update of the json.rs code. I delete the old branch.
From my last request, I remove the example3 because it doesn't compile. I don't understand why and I don't have the time now to investigate.
The `malloc` family of functions may return a null pointer for a
zero-size allocation, which should not be interpreted as an
out-of-memory error.
If the implementation does not return a null pointer, then handling
this will result in memory savings for zero-size types.
This also switches some code to `malloc_raw` in order to maintain a
centralized point for handling out-of-memory in `rt::global_heap`.
Closes#11634