`crate => Crate`
`local => Local`
`blk => Block`
`crate_num => CrateNum`
`crate_cfg => CrateConfig`
Also, Crate and Local are not wrapped in spanned<T> anymore.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spans, so
that `rustc --cfg 'foo(bar)'` now works.
This does a number of things, but especially dramatically reduce the
number of allocations performed for operations involving attributes/
meta items:
- Converts ast::meta_item & ast::attribute and other associated enums
to CamelCase.
- Converts several standalone functions in syntax::attr into methods,
defined on two traits AttrMetaMethods & AttributeMethods. The former
is common to both MetaItem and Attribute since the latter is a thin
wrapper around the former.
- Deletes functions that are unnecessary due to iterators.
- Converts other standalone functions to use iterators and the generic
AttrMetaMethods rather than allocating a lot of new vectors (e.g. the
old code would have to allocate a new vector to use functions that
operated on &[meta_item] on &[attribute].)
- Moves the core algorithm of the #[cfg] matching to syntax::attr,
similar to find_inline_attr and find_linkage_metas.
This doesn't have much of an effect on the speed of #[cfg] stripping,
despite hugely reducing the number of allocations performed; presumably
most of the time is spent in the ast folder rather than doing attribute
checks.
Also fixes the Eq instance of MetaItem_ to correctly ignore spaces, so
that `rustc --cfg 'foo(bar)'` now works.
Whenever a lang_item is required, some relevant message is displayed, often with
a span of what triggered the usage of the lang item.
Now "hello word" is as small as:
```rust
#[no_std];
extern {
fn puts(s: *u8);
}
extern "rust-intrinsic" {
fn transmute<T, U>(t: T) -> U;
}
#[start]
fn main(_: int, _: **u8, _: *u8) -> int {
unsafe {
let (ptr, _): (*u8, uint) = transmute("Hello!");
puts(ptr);
}
return 0;
}
```
Also, makes the pretty-printer use & instead of @ as much as possible,
which will help with later changes, though in the interim has produced
some... interesting constructs.
Mostly just low-haning fruit, i.e. function arguments that were @ even
though & would work just as well.
Reduces librustc.so size by 200k when compiling without -O, by 100k when
compiling with -O.
The removed test for issue #2611 is well covered by the `std::iterator`
module itself.
This adds the `count` method to `IteratorUtil` to replace `EqIter`.
fail!() used to require owned strings but can handle static strings
now. Also, it can pass its arguments to fmt!() on its own, no need for
the caller to call fmt!() itself.
its own type. Use a bitset to represent built-in bounds. There
are several places in the language where only builtin bounds (aka kinds)
will be accepted, e.g. on closures, destructor type parameters perhaps,
and on trait types.