This is a [breaking-change]. When indexing a generic map (hashmap, etc) using the `[]` operator, it is now necessary to borrow explicitly, so change `map[key]` to `map[&key]` (consistent with the `get` routine). However, indexing of string-valued maps with constant strings can now be written `map["abc"]`.
r? @japaric
cc @aturon @Gankro
possible blanket impls and also triggers internal overflow. Add some
special cases for common uses (&&str, &String) for now; bounds-targeting
deref coercions are probably the right longer term answer.
This commit:
* Introduces `std::convert`, providing an implementation of
RFC 529.
* Deprecates the `AsPath`, `AsOsStr`, and `IntoBytes` traits, all
in favor of the corresponding generic conversion traits.
Consequently, various IO APIs now take `AsRef<Path>` rather than
`AsPath`, and so on. Since the types provided by `std` implement both
traits, this should cause relatively little breakage.
* Deprecates many `from_foo` constructors in favor of `from`.
* Changes `PathBuf::new` to take no argument (creating an empty buffer,
as per convention). The previous behavior is now available as
`PathBuf::from`.
* De-stabilizes `IntoCow`. It's not clear whether we need this separate trait.
Closes#22751Closes#14433
[breaking-change]
This commit clarifies some of the unstable features in the `str` module by
moving them out of the blanket `core` and `collections` features.
The following methods were moved to the `str_char` feature which generally
encompasses decoding specific characters from a `str` and dealing with the
result. It is unclear if any of these methods need to be stabilized for 1.0 and
the most conservative route for now is to continue providing them but to leave
them as unstable under a more specific name.
* `is_char_boundary`
* `char_at`
* `char_range_at`
* `char_at_reverse`
* `char_range_at_reverse`
* `slice_shift_char`
The following methods were moved into the generic `unicode` feature as they are
specifically enabled by the `unicode` crate itself.
* `nfd_chars`
* `nfkd_chars`
* `nfc_chars`
* `graphemes`
* `grapheme_indices`
* `width`
This may not be quite ready to go out, I fixed some docs but suspect I missed a bunch.
I also wound up fixing a bunch of redundant `[]` suffixes, but on closer inspection I don't believe that can land until after a snapshot.
This changes the type of some public constants/statics in libunicode.
Notably some `&'static &'static [(char, char)]` have changed
to `&'static [(char, char)]`. The regexp crate seems to be the
sole user of these, yet this is technically a [breaking-change]
Specifically, the following actions were takend:
* The `copy_memory` and `copy_nonoverlapping_memory` functions
to drop the `_memory` suffix (as it's implied by the functionality). Both
functions are now marked as `#[stable]`.
* The `set_memory` function was renamed to `write_bytes` and is now stable.
* The `zero_memory` function is now deprecated in favor of `write_bytes`
directly.
* The `Unique` pointer type is now behind its own feature gate called `unique`
to facilitate future stabilization.
[breaking-change]
Specifically, the following actions were taken:
* The `copy_memory` and `copy_nonoverlapping_memory` functions
to drop the `_memory` suffix (as it's implied by the functionality). Both
functions are now marked as `#[stable]`.
* The `set_memory` function was renamed to `write_bytes` and is now stable.
* The `zero_memory` function is now deprecated in favor of `write_bytes`
directly.
* The `Unique` pointer type is now behind its own feature gate called `unique`
to facilitate future stabilization.
* All type parameters now are `T: ?Sized` wherever possible and new clauses were
added to the `offset` functions to require that the type is sized.
[breaking-change]
This commit stabilizes `std::borrow`, making the following modifications
to catch up the API with language changes:
* It renames `BorrowFrom` to `Borrow`, as was originally intended (but
blocked for technical reasons), and reorders the parameters
accordingly.
* It moves the type parameter of `ToOwned` to an associated type. This
is somewhat less flexible, in that each borrowed type must have a
unique owned type, but leads to a significant simplification for
`Cow`. Flexibility can be regained by using newtyped slices, which is
advisable for other reasons anyway.
* It removes the owned type parameter from `Cow`, making the type much
less verbose.
* Deprecates the `is_owned` and `is_borrowed` predicates in favor of
direct matching.
The above API changes are relatively minor; the basic functionality
remains the same, and essentially the whole module is now marked
`#[stable]`.
[breaking-change]
This breaks all implementors of FromIterator, as they must now accept IntoIterator instead of Iterator. The fix for this is generally trivial (change the bound, and maybe call into_iter() on the argument to get the old argument).
Users of FromIterator should be unaffected because Iterators are IntoIterator.
[breaking-change]
This breaks all implementors of Extend, as they must now accept IntoIterator instead of Iterator. The fix for this is generally trivial (change the bound, and maybe call into_iter() on the argument to get the old argument).
Users of Extend should be unaffected because Iterators are IntoIterator.
[breaking-change]
This commit is an implementation of [RFC 823][rfc] which is another pass over
the `std::hash` module for stabilization. The contents of the module were not
entirely marked stable, but some portions which remained quite similar to the
previous incarnation are now marked `#[stable]`. Specifically:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0823-hash-simplification.md
* `std::hash` is now stable (the name)
* `Hash` is now stable
* `Hash::hash` is now stable
* `Hasher` is now stable
* `SipHasher` is now stable
* `SipHasher::new` and `new_with_keys` are now stable
* `Hasher for SipHasher` is now stable
* Many `Hash` implementations are now stable
All other portions of the `hash` module remain `#[unstable]` as they are less
commonly used and were recently redesigned.
This commit is a breaking change due to the modifications to the `std::hash` API
and more details can be found on the [RFC][rfc].
Closes#22467
[breaking-change]
This is 99% burning ints to the ground, but I also got rid of useless annotations or made code more \"idiomatic\" as I went along. Mostly changes in tests.
This was particularly helpful in the time just after OIBIT's
implementation to make sure things that were supposed to be Copy
continued to be, but it's now creates a lot of noise for types that
intentionally don't want to be Copy.
r? @alexcrichton
This was particularly helpful in the time just after OIBIT's
implementation to make sure things that were supposed to be Copy
continued to be, but it's now creates a lot of noise for types that
intentionally don't want to be Copy.
This commit performs a final stabilization pass over the std::fmt module,
marking all necessary APIs as stable. One of the more interesting aspects of
this module is that it exposes a good deal of its runtime representation to the
outside world in order for `format_args!` to be able to construct the format
strings. Instead of hacking the compiler to assume that these items are stable,
this commit instead lays out a story for the stabilization and evolution of
these APIs.
There are three primary details used by the `format_args!` macro:
1. `Arguments` - an opaque package of a "compiled format string". This structure
is passed around and the `write` function is the source of truth for
transforming a compiled format string into a string at runtime. This must be
able to be constructed in stable code.
2. `Argument` - an opaque structure representing an argument to a format string.
This is *almost* a trait object as it's just a pointer/function pair, but due
to the function originating from one of many traits, it's not actually a
trait object. Like `Arguments`, this must be constructed from stable code.
3. `fmt::rt` - this module contains the runtime type definitions primarily for
the `rt::Argument` structure. Whenever an argument is formatted with
nonstandard flags, a corresponding `rt::Argument` is generated describing how
the argument is being formatted. This can be used to construct an
`Arguments`.
The primary interface to `std::fmt` is the `Arguments` structure, and as such
this type name is stabilize as-is today. It is expected for libraries to pass
around an `Arguments` structure to represent a pending formatted computation.
The remaining portions are largely "cruft" which would rather not be stabilized,
but due to the stability checks they must be. As a result, almost all pieces
have been renamed to represent that they are "version 1" of the formatting
representation. The theory is that at a later date if we change the
representation of these types we can add new definitions called "version 2" and
corresponding constructors for `Arguments`.
One of the other remaining large questions about the fmt module were how the
pending I/O reform would affect the signatures of methods in the module. Due to
[RFC 526][rfc], however, the writers of fmt are now incompatible with the
writers of io, so this question has largely been solved. As a result the
interfaces are largely stabilized as-is today.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md
Specifically, the following changes were made:
* The contents of `fmt::rt` were all moved under `fmt::rt::v1`
* `fmt::rt` is stable
* `fmt::rt::v1` is stable
* `Error` is stable
* `Writer` is stable
* `Writer::write_str` is stable
* `Writer::write_fmt` is stable
* `Formatter` is stable
* `Argument` has been renamed to `ArgumentV1` and is stable
* `ArgumentV1::new` is stable
* `ArgumentV1::from_uint` is stable
* `Arguments::new_v1` is stable (renamed from `new`)
* `Arguments::new_v1_formatted` is stable (renamed from `with_placeholders`)
* All formatting traits are now stable, as well as the `fmt` method.
* `fmt::write` is stable
* `fmt::format` is stable
* `Formatter::pad_integral` is stable
* `Formatter::pad` is stable
* `Formatter::write_str` is stable
* `Formatter::write_fmt` is stable
* Some assorted top level items which were only used by `format_args!` were
removed in favor of static functions on `ArgumentV1` as well.
* The formatting-flag-accessing methods remain unstable
Within the contents of the `fmt::rt::v1` module, the following actions were
taken:
* Reexports of all enum variants were removed
* All prefixes on enum variants were removed
* A few miscellaneous enum variants were renamed
* Otherwise all structs, fields, and variants were marked stable.
In addition to these actions in the `std::fmt` module, many implementations of
`Show` and `String` were stabilized as well.
In some other modules:
* `ToString` is now stable
* `ToString::to_string` is now stable
* `Vec` no longer implements `fmt::Writer` (this has moved to `String`)
This is a breaking change due to all of the changes to the `fmt::rt` module, but
this likely will not have much impact on existing programs.
Closes#20661
[breaking-change]
This commits adds an associated type to the `FromStr` trait representing an
error payload for parses which do not succeed. The previous return value,
`Option<Self>` did not allow for this form of payload. After the associated type
was added, the following attributes were applied:
* `FromStr` is now stable
* `FromStr::Err` is now stable
* `FromStr::from_str` is now stable
* `StrExt::parse` is now stable
* `FromStr for bool` is now stable
* `FromStr for $float` is now stable
* `FromStr for $integral` is now stable
* Errors returned from stable `FromStr` implementations are stable
* Errors implement `Display` and `Error` (both impl blocks being `#[stable]`)
Closes#15138
Don't reallocate when capacity is already equal to length
`Vec::shrink_to_fit()` may be called on vectors that are already the
correct length. Calling out to `reallocate()` in this case is a bad idea
because there is no guarantee that `reallocate()` won't allocate a new
buffer anyway, and based on performance seen in external benchmarks, it
seems likely that it is in fact reallocating a new buffer.
Before:
test string::tests::bench_exact_size_shrink_to_fit ... bench: 45 ns/iter (+/- 2)
After:
test string::tests::bench_exact_size_shrink_to_fit ... bench: 26 ns/iter (+/- 1)
This commit deprecates `slice`, `slice_from`, `slice_to` and their
mutable variants in favor of slice notation.
The `as_slice` methods are left intact, for now.
[breaking-change]
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This commit performs a pass over the implementations of the new `String` trait
in the formatting module. Some implementations were removed as a conservative
move pending an upcoming convention about `String` implementations, and some
were added in order to retain consistency across the libraries. Specifically:
* All "smart pointers" implement `String` now, adding missing implementations
for `Arc` and `Rc`.
* The `Vec<T>` and `[T]` types no longer implement `String`.
* The `*const T` and `*mut T` type no longer implement `String`.
* The `()` type no longer implements `String`.
* The `Path` type's `Show` implementation does not surround itself with `Path
{}` (a minor tweak).
All implementations of `String` in this PR were also marked `#[stable]` to
indicate that the types will continue to implement the `String` trait regardless
of what it looks like.
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
macro_rules! is like an item that defines a macro. Other items don't have a
trailing semicolon, or use a paren-delimited body.
If there's an argument for matching the invocation syntax, e.g. parentheses for
an expr macro, then I think that applies more strongly to the *inner*
delimiters on the LHS, wrapping the individual argument patterns.
This commit is an implementation of [RFC 494][rfc] which removes the entire
`std::c_vec` module and redesigns the `std::c_str` module as `std::ffi`.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0494-c_str-and-c_vec-stability.md
The interface of the new `CString` is outlined in the linked RFC, the primary
changes being:
* The `ToCStr` trait is gone, meaning the `with_c_str` and `to_c_str` methods
are now gone. These two methods are replaced with a `CString::from_slice`
method.
* The `CString` type is now just a wrapper around `Vec<u8>` with a static
guarantee that there is a trailing nul byte with no internal nul bytes. This
means that `CString` now implements `Deref<Target = [c_char]>`, which is where
it gains most of its methods from. A few helper methods are added to acquire a
slice of `u8` instead of `c_char`, as well as including a slice with the
trailing nul byte if necessary.
* All usage of non-owned `CString` values is now done via two functions inside
of `std::ffi`, called `c_str_to_bytes` and `c_str_to_bytes_with_nul`. These
functions are now the one method used to convert a `*const c_char` to a Rust
slice of `u8`.
Many more details, including newly deprecated methods, can be found linked in
the RFC. This is a:
[breaking-change]
Closes#20444
This removes a large array of deprecated functionality, regardless of how
recently it was deprecated. The purpose of this commit is to clean out the
standard libraries and compiler for the upcoming alpha release.
Some notable compiler changes were to enable warnings for all now-deprecated
command line arguments (previously the deprecated versions were silently
accepted) as well as removing deriving(Zero) entirely (the trait was removed).
The distribution no longer contains the libtime or libregex_macros crates. Both
of these have been deprecated for some time and are available externally.
Prior to 9bae6ec828 from_utf8_lossy had a minor optimization in place that avoided having to loop from the beginning of the input slice.
Recently 4908017d59 implemented Utf8Error::InvalidByte which makes this possible again.