Make accesses to fields of packed structs unsafe
To handle packed structs with destructors (which you'll think are a rare
case, but the `#[repr(packed)] struct Packed<T>(T);` pattern is
ever-popular, which requires handling packed structs with destructors to
avoid monomorphization-time errors), drops of subfields of packed
structs should drop a local move of the field instead of the original
one.
That's it, I think I'll use a strategy suggested by @Zoxc, where this mir
```
drop(packed_struct.field)
```
is replaced by
```
tmp0 = packed_struct.field;
drop tmp0
```
cc #27060 - this should deal with that issue after codegen of drop glue
is updated.
The new errors need to be changed to future-compatibility warnings, but
I'll rather do a crater run first with them as errors to assess the
impact.
cc @eddyb
Things which still need to be done for this:
- [ ] - handle `repr(packed)` structs in `derive` the same way I did in `Span`, and use derive there again
- [ ] - implement the "fix packed drops" pass and call it in both the MIR shim and validated MIR pipelines
- [ ] - do a crater run
- [ ] - convert the errors to compatibility warnings
Refactor type memory layouts and ABIs, to be more general and easier to optimize.
To combat combinatorial explosion, type layouts are now described through 3 orthogonal properties:
* `Variants` describes the plurality of sum types (where applicable)
* `Single` is for one inhabited/active variant, including all C `struct`s and `union`s
* `Tagged` has its variants discriminated by an integer tag, including C `enum`s
* `NicheFilling` uses otherwise-invalid values ("niches") for all but one of its inhabited variants
* `FieldPlacement` describes the number and memory offsets of fields (if any)
* `Union` has all its fields at offset `0`
* `Array` has offsets that are a multiple of its `stride`; guarantees all fields have one type
* `Arbitrary` records all the field offsets, which can be out-of-order
* `Abi` describes how values of the type should be passed around, including for FFI
* `Uninhabited` corresponds to no values, associated with unreachable control-flow
* `Scalar` is ABI-identical to its only integer/floating-point/pointer "scalar component"
* `ScalarPair` has two "scalar components", but only applies to the Rust ABI
* `Vector` is for SIMD vectors, typically `#[repr(simd)]` `struct`s in Rust
* `Aggregate` has arbitrary contents, including all non-transparent C `struct`s and `union`s
Size optimizations implemented so far:
* ignoring uninhabited variants (i.e. containing uninhabited fields), e.g.:
* `Option<!>` is 0 bytes
* `Result<T, !>` has the same size as `T`
* using arbitrary niches, not just `0`, to represent a data-less variant, e.g.:
* `Option<bool>`, `Option<Option<bool>>`, `Option<Ordering>` are all 1 byte
* `Option<char>` is 4 bytes
* using a range of niches to represent *multiple* data-less variants, e.g.:
* `enum E { A(bool), B, C, D }` is 1 byte
Code generation now takes advantage of `Scalar` and `ScalarPair` to, in more cases, pass around scalar components as immediates instead of indirectly, through pointers into temporary memory, while avoiding LLVM's "first-class aggregates", and there's more untapped potential here.
Closes#44426, fixes#5977, fixes#14540, fixes#43278.
MIR-borrowck: Migrate remaining ast diagnostics
This PR migrates all of the remaining diagnostics in `rustc_borrowck` over to `rustc_mir`, exposing them for use by both AST-borrowck and MIR-borrowck.
This should hopefully resolve all remaining cases of diagnostic messages emitted from borrowck under `-Z borrowck-mir` without an origin annotation.
Extend mir dump to dump each region
Building on #44878, implement the feature discussed in #44872.
Through discussions on the WG-nll-gitter, @nikomatsakis and I decided to implement this by extending `dump_mir` and all functions that it calls to take a callback of signature `FnMut(PassWhere, &mut Write) -> io::Result<()>` where `PassWhere` is an enum that represents possible locations that we may want to print out extra data in the process of dumping the MIR.
I'm not particularly wedded to the name `PassWhere`, but I felt that simply calling the enum `Where` wasn't the right thing to name it.
This work depends strongly on #44878, and should be rebased on the final version of that tree, whatever that may be.
MIR-borrowck: gather and signal any move errors
When building up the `MoveData` structure for a given MIR, also accumulate any erroneous actions, and then report all of those errors when the construction is complete.
This PR adds a host of move-related error constructor methods to `trait BorrowckErrors`. I think I got the notes right; but we should plan to audit all of the notes before turning MIR-borrowck on by default.
Fix#44830
Extend `dump_mir` and functions it calls in order to allow callers to
add custom information. We do this by adding an enum `PassWhere` and
an extra argument of type `FnMut(PassWhere, &mut Write) ->
io::Result<()>`. This callback is responsible for printing the extra
information when MIR is dumped at various stages.
For the "nll" pass, use the new mechanism to dump the `Region`
information after the header, but before the control flow graph for
every function.
In the interest of keeping the output somewhat concise, implement
a custom Debug impl for `Region`
Open Questions:
* What should we call what has been called `PassWhere` so far?
MIR borrowck: move span_label to `borrowck_errors.rs`
The calls to `span_label` are moved and factorized for:
* E0503 (`cannot_use_when_mutably_borrowed()`)
* E0506 (`cannot_assign_to_borrowed()`)
Additionnally, the error E0594 (`cannot_assign_static()`) has been factorized between `check_loan.rs` and `borrowc_check.rs`.
Part of #44596
This commit moves the calculation of the `LanguageItems` structure into a
query rather than being calculated before the `TyCtxt` exists, with the eventual
end goal of removing some `CrateStore` methods.