Closes https://github.com/rust-lang/rust/issues/19077
I would appreciate any guidance on how to write a test for this. I saw some examples in `test/pretty`, but there are different ways to test... With or without `.pp` files, with a `pp-exact` comment, etc.
This breaks code like
```
let t = (42i, 42i);
... t.0::<int> ...;
```
Change this code to not contain an unused type parameter. For example:
```
let t = (42i, 42i);
... t.0 ...;
```
Closes https://github.com/rust-lang/rust/issues/19096
[breaking-change]
r? @aturon
This breaks code like
```
let t = (42i, 42i);
... t.0::<int> ...;
```
Change this code to not contain an unused type parameter. For example:
```
let t = (42i, 42i);
... t.0 ...;
```
Closes https://github.com/rust-lang/rust/issues/19096
[breaking-change]
The struct_variant is not gated anymore. This commit just removes it and the resulting warnings when compiling rust. Now compiles with the snapshot from 11/18 (as opposed to PR #19014)
Use the expected type to infer the argument/return types of unboxed closures. Also, in `||` expressions, use the expected type to decide if the result should be a boxed or unboxed closure (and if an unboxed closure, what kind).
This supercedes PR #19089, which was already reviewed by @pcwalton.
Futureproof Rust for fancier suffixed literals. The Rust compiler tokenises a literal followed immediately (no whitespace) by an identifier as a single token: (for example) the text sequences `"foo"bar`, `1baz` and `1u1024` are now a single token rather than the pairs `"foo"` `bar`, `1` `baz` and `1u` `1024` respectively.
The compiler rejects all such suffixes in the parser, except for the 12 numeric suffixes we have now.
I'm fairly sure this will affect very few programs, since it's not currently legal to have `<literal><identifier>` in a Rust program, except in a macro invocation. Any macro invocation relying on this behaviour can simply separate the two tokens with whitespace: `foo!("bar"baz)` becomes `foo!("bar" baz)`.
This implements [RFC 463](https://github.com/rust-lang/rfcs/blob/master/text/0463-future-proof-literal-suffixes.md), and so closes https://github.com/rust-lang/rust/issues/19088.
This commit applies the stabilization of std::fmt as outlined in [RFC 380][rfc].
There are a number of breaking changes as a part of this commit which will need
to be handled to migrated old code:
* A number of formatting traits have been removed: String, Bool, Char, Unsigned,
Signed, and Float. It is recommended to instead use Show wherever possible or
to use adaptor structs to implement other methods of formatting.
* The format specifier for Boolean has changed from `t` to `b`.
* The enum `FormatError` has been renamed to `Error` as well as becoming a unit
struct instead of an enum. The `WriteError` variant no longer exists.
* The `format_args_method!` macro has been removed with no replacement. Alter
code to use the `format_args!` macro instead.
* The public fields of a `Formatter` have become read-only with no replacement.
Use a new formatting string to alter the formatting flags in combination with
the `write!` macro. The fields can be accessed through accessor methods on the
`Formatter` structure.
Other than these breaking changes, the contents of std::fmt should now also all
contain stability markers. Most of them are still #[unstable] or #[experimental]
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0380-stabilize-std-fmt.md
[breaking-change]
Closes#18904
This adds an optional suffix at the end of a literal token:
`"foo"bar`. An actual use of a suffix in a expression (or other literal
that the compiler reads) is rejected in the parser.
This doesn't switch the handling of numbers to this system, and doesn't
outlaw illegal suffixes for them yet.
This commit applies the stabilization of std::fmt as outlined in [RFC 380][rfc].
There are a number of breaking changes as a part of this commit which will need
to be handled to migrated old code:
* A number of formatting traits have been removed: String, Bool, Char, Unsigned,
Signed, and Float. It is recommended to instead use Show wherever possible or
to use adaptor structs to implement other methods of formatting.
* The format specifier for Boolean has changed from `t` to `b`.
* The enum `FormatError` has been renamed to `Error` as well as becoming a unit
struct instead of an enum. The `WriteError` variant no longer exists.
* The `format_args_method!` macro has been removed with no replacement. Alter
code to use the `format_args!` macro instead.
* The public fields of a `Formatter` have become read-only with no replacement.
Use a new formatting string to alter the formatting flags in combination with
the `write!` macro. The fields can be accessed through accessor methods on the
`Formatter` structure.
Other than these breaking changes, the contents of std::fmt should now also all
contain stability markers. Most of them are still #[unstable] or #[experimental]
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0380-stabilize-std-fmt.md
[breaking-change]
Closes#18904
The trait has an obvious, sensible implementation directly on vectors so
the MemWriter wrapper is unnecessary. This will halt the trend towards
providing all of the vector methods on MemWriter along with eliminating
the noise caused by conversions between the two types. It also provides
the useful default Writer methods on Vec<u8>.
After the type is removed and code has been migrated, it would make
sense to add a new implementation of MemWriter with seeking support. The
simple use cases can be covered with vectors alone, and ones with the
need for seeks can use a new MemWriter implementation.
The trait has an obvious, sensible implementation directly on vectors so
the MemWriter wrapper is unnecessary. This will halt the trend towards
providing all of the vector methods on MemWriter along with eliminating
the noise caused by conversions between the two types. It also provides
the useful default Writer methods on Vec<u8>.
After the type is removed and code has been migrated, it would make
sense to add a new implementation of MemWriter with seeking support. The
simple use cases can be covered with vectors alone, and ones with the
need for seeks can use a new MemWriter implementation.
Came up on IRC that this was a bit unhelpful as to what should actually be *done*. I am new to changing compiler messages, please let me know if there's anything else that needs to be done to accomadate this change.
(My build system is still constantly crashing [Is bors contagious?], so this hasn't been formally `check`ed. I figure it's a simple enough change that any consequences [like compile-fail expected messages?] can be eyeballed by someone more experienced.)
`slice_shift_char` splits a `str` into it's leading `char` and the remainder of the `str`. Currently, it returns a `(Option<char>, &str)` such that:
"bar".slice_shift_char() => (Some('b'), "ar")
"ar".slice_shift_char() => (Some('a'), "r")
"r".slice_shift_char() => (Some('r'), "")
"".slice_shift_char() => (None, "")
This is a little odd. Either a `str` can be split into both a head and a tail or it cannot. So the return type should be `Option<(char, &str)>`. With the current behaviour, in the case of the empty string, the `str` returned is meaningless - it is always the empty string.
This PR changes `slice_shift_char` so that:
"bar".slice_shift_char() => Some(('b', "ar"))
"ar".slice_shift_char() => Some(('a', "r"))
"r".slice_shift_char() => Some(('r', ""))
"".slice_shift_char() => None
Following [the collections reform RFC](https://github.com/rust-lang/rfcs/pull/235), this PR:
* Adds a new `borrow` module to libcore. The module contains traits for borrowing data (`BorrowFrom` and `BorrowFromMut`), generalized cloning (`ToOwned`), and a clone-on-write smartpointer (`Cow`).
* Deprecates the `_equiv` family of methods on `HashMap` and `HashSet` by instead generalizing the "normal" methods like `get` and `remove` to use the new `std::borrow` infrastructure.
* Generalizes `TreeMap`, `TreeSet`, `BTreeMap` and `BTreeSet` to use the new `std::borrow` infrastructure for lookups.
[breaking-change]
This is especially useful for declaring a static with external linkage in an executable. There isn't any way to do that currently since we mark everything in an executable as internal by default.
Also, a quick fix to have the no-compiler-rt target option respected when building staticlibs as well.
groundwork for better performance.
Key points:
- Separate out determining which method to use from actually selecting
a method (this should enable caching, as well as the pcwalton fast-reject strategy).
- Merge the impl selection back into method resolution and don't rely on
trait matching (this should perform better but also is needed to resolve some
kind of conflicts, see e.g. `method-two-traits-distinguished-via-where-clause.rs`)
- Purge a lot of out-of-date junk and coercions from method lookups.