Storing the type name in the `tydesc` aims to avoid the need to pass a type name in almost every single visitor method.
It would likely be much saner for `repr` to simply be passed the `TyDesc` corresponding to the function or just the type name, but this is good enough for now.
There are 6 new compiler recognised attributes: deprecated, experimental,
unstable, stable, frozen, locked (these levels are taken directly from
Node's "stability index"[1]). These indicate the stability of the
item to which they are attached; e.g. `#[deprecated] fn foo() { .. }`
says that `foo` is deprecated.
This comes with 3 lints for the first 3 levels (with matching names) that
will detect the use of items marked with them (the `unstable` lint
includes items with no stability attribute). The attributes can be given
a short text note that will be displayed by the lint. An example:
#[warn(unstable)]; // `allow` by default
#[deprecated="use `bar`"]
fn foo() { }
#[stable]
fn bar() { }
fn baz() { }
fn main() {
foo(); // "warning: use of deprecated item: use `bar`"
bar(); // all fine
baz(); // "warning: use of unmarked item"
}
The lints currently only check the "edges" of the AST: i.e. functions,
methods[2], structs and enum variants. Any stability attributes on modules,
enums, traits and impls are not checked.
[1]: http://nodejs.org/api/documentation.html
[2]: the method check is currently incorrect and doesn't work.
As with the previous commit, this is targeted at removing the possibility of
collisions between statics. The main use case here is when there's a
type-parametric function with an inner static that's compiled as a library.
Before this commit, any impl would generate a path item of "__extensions__".
This changes this identifier to be a "pretty name", which is either the last
element of the path of the trait implemented or the last element of the type's
path that's being implemented. That doesn't quite cut it though, so the (trait,
type) pair is hashed and again used to append information to the symbol.
Essentially, __extensions__ was removed for something nicer for debugging, and
then some more information was added to symbol name by including a hash of the
trait being implemented and type it's being implemented for. This should prevent
colliding names for inner statics in regular functions with similar names.
Whenever a generic function was encountered, only the top-level items were
recursed upon, even though the function could contain items inside blocks or
nested inside of other expressions. This fixes the existing code from traversing
just the top level items to using a Visitor to deeply recurse and find any items
which need to be translated.
This was uncovered when building code with --lib, because the encode_symbol
function would panic once it found that an item hadn't been translated.
Closes#8134
Whenever a generic function was encountered, only the top-level items were
recursed upon, even though the function could contain items inside blocks or
nested inside of other expressions. This fixes the existing code from traversing
just the top level items to using a Visitor to deeply recurse and find any items
which need to be translated.
This was uncovered when building code with --lib, because the encode_symbol
function would panic once it found that an item hadn't been translated.
Closes#8134
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
Fixes for #8625 to prevent assigning to `&mut` in borrowed or aliasable locations. The old code was insufficient in that it failed to catch bizarre cases like `& &mut &mut`.
r? @pnkfelix
Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
All of these "copies" of clang are based off their [source code](http://clang.llvm.org/doxygen/BackendUtil_8cpp_source.html) in case anyone is curious what my source is. I was hoping that this would fix#8665, but this does not help the performance issues found there. Hopefully i'll allow us to tweak passes or see what's going on to try to debug that problem.
Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
This patchset enables rustc to cross-build mingw-w64 outputs.
Tested on mingw + mingw-w64 (mingw-builds, win64/seh/win32-threads/gcc-4.8.1).
I also patched llvm to support Win64 stack unwinding.
ebe22bdbce
I cross-built test/run-pass/smallest-hello-world.rs and confirmed it works.
However, I also found something went wrong if I don't have custom `#[start]` routine.
Further followup on #7081.
There still remains writeback.rs, but I want to wait to investigate that one because I've seen `make check` issues with it in the past.