In accordance with [collections reform part 2][rfc] this macro has been moved to
an external [bitflags crate][crate] which is [available though
crates.io][cratesio]. Inside the standard distribution the macro has been moved
to a crate called `rustc_bitflags` for current users to continue using.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0509-collections-reform-part-2.md
[crate]: https://github.com/rust-lang/bitflags
[cratesio]: http://crates.io/crates/bitflags
The major user of `bitflags!` in terms of a public-facing possibly-stable API
today is the `FilePermissions` structure inside of `std::io`. This user,
however, will likely no longer use `bitflags!` after I/O reform has landed. To
prevent breaking APIs today, this structure remains as-is.
Current users of the `bitflags!` macro should add this to their `Cargo.toml`:
bitflags = "0.1"
and this to their crate root:
#[macro_use] extern crate bitflags;
Due to the removal of a public macro, this is a:
[breaking-change]
This stops the compiler ICEing on the use of SIMD types in FFI signatures. It emits correct code for LLVM intrinsics, but I am quite unsure about the ABI handling in general so I've added a new feature gate `simd_ffi` to try to ensure people don't use it without realising there's a non-trivial risk of codegen brokenness.
Closes#20043.
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
These aren't in their final form, but are all aiming to be part of 1.0, so at the very least encouraging usage now to find the bugs is nice.
Also, the widespread roll-out of associated types in the standard library indicates they're getting good, and it's lame to have to activate a feature in essentially every crate ever.
This commit is an implementation of [RFC 494][rfc] which removes the entire
`std::c_vec` module and redesigns the `std::c_str` module as `std::ffi`.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0494-c_str-and-c_vec-stability.md
The interface of the new `CString` is outlined in the linked RFC, the primary
changes being:
* The `ToCStr` trait is gone, meaning the `with_c_str` and `to_c_str` methods
are now gone. These two methods are replaced with a `CString::from_slice`
method.
* The `CString` type is now just a wrapper around `Vec<u8>` with a static
guarantee that there is a trailing nul byte with no internal nul bytes. This
means that `CString` now implements `Deref<Target = [c_char]>`, which is where
it gains most of its methods from. A few helper methods are added to acquire a
slice of `u8` instead of `c_char`, as well as including a slice with the
trailing nul byte if necessary.
* All usage of non-owned `CString` values is now done via two functions inside
of `std::ffi`, called `c_str_to_bytes` and `c_str_to_bytes_with_nul`. These
functions are now the one method used to convert a `*const c_char` to a Rust
slice of `u8`.
Many more details, including newly deprecated methods, can be found linked in
the RFC. This is a:
[breaking-change]
Closes#20444
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
Makes a couple changes that support the implementation of a REPL:
* Implementation of wrapper code for LLVM ExecutionEngine API
* Fixing a change I made earlier to reset compiler state in `phase_1_[...]`
instead of `compile_input` as the latter is not used in a REPL
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
Closes#13159
cc #19091
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
Use the integer sizes LLVM uses, rather than having random projections
laying around. Sizes are u64, Alignments are u32, C_*int is target-dependent
but 64-bit is fine (the int -> C_int conversion is non-precision-losing,
but it can be preceded by `as int` conversions which are, so it is
somewhat ugly. However, being able to suffix a `u` to properly infer
integer types is nice).
Position independent code has fewer requirements in executables, so pass
the appropriate flag to LLVM in order to allow more optimization. At the
moment this means faster thread-local storage.
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
Closes#17718
[rfc]: https://github.com/rust-lang/rfcs/pull/246
This breaks code like:
struct Foo {
...
}
pub fn make_foo() -> Foo {
...
}
Change this code to:
pub struct Foo { // note `pub`
...
}
pub fn make_foo() -> Foo {
...
}
The `visible_private_types` lint has been removed, since it is now an
error to attempt to expose a private type in a public API. In its place
a `#[feature(visible_private_types)]` gate has been added.
Closes#16463.
RFC #48.
[breaking-change]