assert ScalarMaybeUninit size
I noticed most low-level Miri types have such an assert but `ScalarMaybeUninit` does not, so let's add that. Good t see that the `Option`-like optimization kicks in and this is no bigger than `Scalar`. :)
r? @oli-obk
lint/ty: move fns to avoid abstraction violation
This PR moves `transparent_newtype_field` and `is_zst` to `LateContext` where they are used, rather than being on the `VariantDef` and `TyS` types, hopefully addressing @eddyb's concern [from this comment](https://github.com/rust-lang/rust/pull/74340#discussion_r456534910).
compare generic constants using `AbstractConst`s
This is a MVP of rust-lang/compiler-team#340. The changes in this PR should only be relevant if `feature(const_evaluatable_checked)` is enabled.
~~currently based on top of #76559, so blocked on that.~~
r? `@oli-obk` cc `@varkor` `@eddyb`
Issue 72408 nested closures exponential
This fixes#72408.
Nested closures were resulting in exponential compilation time.
This PR is enhancing asymptotic complexity, but also increasing the constant, so I would love to see perf run results.
Mostly to fix ui/issues/issue-37311-type-length-limit/issue-37311.rs.
Most parts of the compiler can handle deeply nested types with a lot
of duplicates just fine, but some parts still attempt to naively
traverse type tree.
Before such problems were caught by type length limit check,
but now these places will have to be changed to handle
duplicated types gracefully.
This fixes#72408.
Nested closures were resulting in exponential compilation time.
As a performance optimization this change introduces MiniSet,
which is a simple small storage optimized set.
improve const infer error
cc #72328
reduces it from
```
error[E0282]: type annotations needed
--> src/main.rs:17:5
|
17 | Foo.bar().bar().bar().bar().baz();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: unable to infer the value of a const parameter
```
to
```
error[E0282]: type annotations needed
--> $DIR/method-chain.rs:21:33
|
LL | Foo.bar().bar().bar().bar().baz();
| ^^^
|
= note: cannot infer the value of the const parameter `N`
```
r? @varkor
fix syntax error in suggesting generic constraint in trait parameter
suggest `where T: Foo` for the first bound on a trait, then suggest
`, T: Foo` when the suggested bound would add to an existing set of
`where` clauses. `where T: Foo` may be the first bound if `T` has a
default, because we'd rather suggest
```
trait A<T=()> where T: Copy
```
than
```
trait A<T: Copy=()>
```
for legibility reasons.
the test case i added here is derived from [this reproduction](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=0bf3ace9f2a183d0bdbd748c6b8e3971):
```
struct B<T: Copy> {
t: T
}
trait A<T = ()> {
fn returns_constrained_type(&self, t: T) -> B<T> {
B { t }
}
}
```
where the suggested fix,
```
trait A<T = ()>, T: Copy { ... }
```
is in fact invalid syntax!
i also found an error in the existing suggestion for `trait Base<T = String>: Super<T>` where rustc would suggest `trait Base<T = String>: Super<T>, T: Copy`, but `T: Copy` is the first of the trait's `where` clauses and should be `where T: Copy` as well. the test for that suggestion expects invalid syntax, and has been revised to a compiler-pleasing `trait Base<T = String>: Super<T> where T: Copy`.
judging by https://github.com/rust-lang/rust/pull/70009 i'll.. cc @estebank ?
Note when a a move/borrow error is caused by a deref coercion
Fixes#73268
When a deref coercion occurs, we may end up with a move error if the
base value has been partially moved out of. However, we do not indicate
anywhere that a deref coercion is occuring, resulting in an error
message with a confusing span.
This PR adds an explicit note to move errors when a deref coercion is
involved. We mention the name of the type that the deref-coercion
resolved to, as well as the `Deref::Target` associated type being used.
More structured suggestions for boxed trait objects instead of impl Trait on non-coerceable tail expressions
When encountering a `match` or `if` as a tail expression where the
different arms do not have the same type *and* the return type of that
`fn` is an `impl Trait`, check whether those arms can implement `Trait`
and if so, suggest using boxed trait objects.
Use structured suggestion for `impl T` to `Box<dyn T>`.
Fix https://github.com/rust-lang/rust/issues/69107
This commit improves the diagnostic when a type parameter is expected
and a closure is found, noting that each closure has a distinct type and
therefore could not always match the caller-chosen type of the
parameter.
Signed-off-by: David Wood <david@davidtw.co>
suggest `where T: Foo` for the first bound on a trait, then suggest
`, T: Foo` when the suggested bound would add to an existing set of
`where` clauses. `where T: Foo` may be the first bound if `T` has a
default, because we'd rather suggest
```
trait A<T=()> where T: Copy
```
than
```
trait A<T: Copy=()>
```
for legibility reasons.
When encountering a `match` or `if` as a tail expression where the
different arms do not have the same type *and* the return type of that
`fn` is an `impl Trait`, check whether those arms can implement `Trait`
and if so, suggest using boxed trait objects.
Fixes#73268
When a deref coercion occurs, we may end up with a move error if the
base value has been partially moved out of. However, we do not indicate
anywhere that a deref coercion is occuring, resulting in an error
message with a confusing span.
This PR adds an explicit note to move errors when a deref coercion is
involved. We mention the name of the type that the deref-coercion
resolved to, as well as the `Deref::Target` associated type being used.
Add CONST_ITEM_MUTATION lint
Fixes#74053Fixes#55721
This PR adds a new lint `CONST_ITEM_MUTATION`.
Given an item `const FOO: SomeType = ..`, this lint fires on:
* Attempting to write directly to a field (`FOO.field = some_val`) or
array entry (`FOO.array_field[0] = val`)
* Taking a mutable reference to the `const` item (`&mut FOO`), including
through an autoderef `FOO.some_mut_self_method()`
The lint message explains that since each use of a constant creates a
new temporary, the original `const` item will not be modified.
make `ConstEvaluatable` more strict
relevant zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60ConstEvaluatable.60.20generic.20functions/near/204125452
Let's see how much this impacts. Depending on how this goes this should probably be a future compat warning.
Short explanation: we currently forbid anonymous constants which depend on generic types, e.g. `[0; std::mem::size_of::<T>]` currently errors.
We previously checked this by evaluating the constant and returned an error if that failed. This however allows things like
```rust
const fn foo<T>() -> usize {
if std::mem::size_of::<*mut T>() < 8 { // size of *mut T does not depend on T
std::mem::size_of::<T>()
} else {
8
}
}
fn test<T>() {
let _ = [0; foo::<T>()];
}
```
which is a backwards compatibility hazard. This also has worrying interactions with mir optimizations (https://github.com/rust-lang/rust/pull/74491#issuecomment-661890421) and intrinsics (#74538).
r? `@oli-obk` `@eddyb`