Make it clearer that we're just checking for an RPITIT
Tiny nit to use `is_impl_trait_in_trait` more, to make it clearer that we're just checking whether a def-id is an RPITIT, rather than doing something meaningful with the `opt_rpitit_info`.
r? `@spastorino`
Make RPITITs assume/require their parent method's predicates
Removes a FIXME from the `param_env` query where we were manually adding the parent function's predicates to the RPITIT's assumptions.
r? `@spastorino`
This reverts commit b913f5593d.
CI builds with profile=nightly, causing different test output.
Making the output depend on the release channel was not a great idea.
Refactor metadata emission to avoid visiting HIR
This PR refactors metadata emission to be based on tables and iteration over definitions.
In a first part, this PR moves information from the `EntryKind` enum to tables, until removing the `EntryKind` enum.
In a second part, the iteration scheme is refactored to avoid fetching HIR unless strictly necessary.
r? `@ghost`
Various impl trait in assoc tys cleanups
r? `@compiler-errors`
All commits except for the last are pure refactorings. 274dab5bd658c97886a8987340bf50ae57900c39 allows struct fields to participate in deciding whether a function has an opaque in its signature.
best reviewed commit by commit
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
Write to stdout if `-` is given as output file
With this PR, if `-o -` or `--emit KIND=-` is provided, output will be written to stdout instead. Binary output (those of type `obj`, `llvm-bc`, `link` and `metadata`) being written this way will result in an error unless stdout is not a tty. Multiple output types going to stdout will trigger an error too, as they will all be mixded together.
This implements https://github.com/rust-lang/compiler-team/issues/431
The idea behind the changes is to introduce an `OutFileName` enum that represents the output - be it a real path or stdout - and to use this enum along the code paths that handle different output types.
Remember names of `cfg`-ed out items to mention them in diagnostics
# Examples
## `serde::Deserialize` without the `derive` feature (a classic beginner mistake)
I had to slightly modify serde so that it uses explicit re-exports instead of a glob re-export. (Update: a serde PR was merged that adds the manual re-exports)
```
error[E0433]: failed to resolve: could not find `Serialize` in `serde`
--> src/main.rs:1:17
|
1 | #[derive(serde::Serialize)]
| ^^^^^^^^^ could not find `Serialize` in `serde`
|
note: crate `serde` has an item named `Serialize` but it is inactive because its cfg predicate evaluated to false
--> /home/gh-Nilstrieb/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.160/src/lib.rs:343:1
|
343 | #[cfg(feature = "serde_derive")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
344 | pub use serde_derive::{Deserialize, Serialize};
| ^^^^^^^^^
= note: the item is gated behind the `serde_derive` feature
= note: see https://doc.rust-lang.org/cargo/reference/features.html for how to activate a crate's feature
```
(the suggestion is not ideal but that's serde's fault)
I already tested the metadata size impact locally by compiling the `windows` crate without any features. `800k` -> `809k`
r? `@ghost`
- remove useless commands from test Makefile
- do not unnecessarily remove metadata temporary files because they'll be managed by MaybeTempDir
- remove unused FailedRemove error introduced by this PR
If `-o -` or `--emit KIND=-` is provided, output will be written
to stdout instead. Binary output (`obj`, `llvm-bc`, `link` and
`metadata`) being written this way will result in an error unless
stdout is not a tty. Multiple output types going to stdout will
trigger an error too, as they will all be mixded together.
`#[cfg]`s are frequently used to gate crate content behind cargo
features. This can lead to very confusing errors when features are
missing. For example, `serde` doesn't have the `derive` feature by
default. Therefore, `serde::Serialize` fails to resolve with a generic
error, even though the macro is present in the docs.
This commit adds a list of all stripped item names to metadata. This is
filled during macro expansion and then, through a fed query, persisted
in metadata. The downstream resolver can then access the metadata to
look at possible candidates for mentioning in the errors.
This slightly increases metadata (800k->809k for the feature-heavy
windows crate), but not enough to really matter.
Only rewrite valtree-constants to patterns and keep other constants opaque
Now that we can reliably fall back to comparing constants with `PartialEq::eq` to the match scrutinee, we can
1. eagerly try to convert constants to valtrees
2. then deeply convert the valtree to a pattern
3. if the to-valtree conversion failed, create an "opaque constant" pattern.
This PR specifically avoids any behavioral changes or major cleanups. What we can now do as follow ups is
* move the two remaining call sites to `destructure_mir_constant` off that query
* make valtree to pattern conversion infallible
* this needs to be done after careful analysis of the effects. There may be user visible changes from that.
based on https://github.com/rust-lang/rust/pull/111768
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
Load only the crate header for `locator::crate_matches`
Previously, we used the following info to determine whether to load the crate:
1. The METADATA_HEADER, which includes a METADATA_VERSION constant
2. The embedded rustc version
3. Various metadata in the `CrateRoot`, including the SVH
This worked ok most of the time. Unfortunately, when building locally the rustc version is always
the same because `omit-git-hash` is on by default. That meant that we depended only on 1 and 3, and
we are not very good about bumping METADATA_VERSION (it's currently at 7) so in practice we were
only depending on 3. `CrateRoot` is a very large struct and changes somewhat regularly, so this led
to a steady stream of crashes from trying to load it.
Change the logic to add an intermediate step between 2 and 3: introduce a new `CrateHeader` struct
that contains only the minimum info needed to decide whether the crate should be loaded or not. That
avoids having to load all of `CrateRoot`, which in practice means we should crash much less often.
Note that this works because the SVH should be different between any two dependencies, even if the
compiler has changed, because we use `-Zbinary-dep-depinfo` in bootstrap. See
https://github.com/rust-lang/rust/pull/111329#issuecomment-1538303474 for more details about how the
original crash happened.
Previously, we used the following info to determine whether to load the crate:
1. The METADATA_HEADER, which includes a METADATA_VERSION constant
2. The embedded rustc version
3. Various metadata in the `CrateRoot`, including the SVH
This worked ok most of the time. Unfortunately, when building locally the rustc version is always
the same because `omit-git-hash` is on by default. That meant that we depended only on 1 and 3, and
we are not very good about bumping METADATA_VERSION (it's currently at 7) so in practice we were
only depending on 3. `CrateRoot` is a very large struct and changes somewhat regularly, so this led
to a steady stream of crashes from trying to load it.
Change the logic to add an intermediate step between 2 and 3: introduce a new `CrateHeader` struct
that contains only the minimum info needed to decide whether the crate should be loaded or not. That
avoids having to load all of `CrateRoot`, which in practice means we should crash much less often.
Note that this works because the SVH should be different between any two dependencies, even if the
compiler has changed, because we use `-Zbinary-dep-depinfo` in bootstrap. See
https://github.com/rust-lang/rust/pull/111329#issuecomment-1538303474 for more details about how the
original crash happened.
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)