Previously the stability lint considered cross-crate items only. That's appropriate for unstable and experimental levels, but not for deprecation.
In addition to changing the lint, this PR takes care of the fallout: a number of deprecated items that were being used throughout libstd.
Closes#16409
Due to deny(deprecated), this is a:
[breaking-change]
This fixes borrow checking for closures. Code like this will break:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
let p = &this.x;
&mut this.x;
};
r()
}
Change this code to not take multiple mutable references to the same value. For
example:
struct Foo {
x: int,
}
pub fn main() {
let mut this = &mut Foo {
x: 1,
};
let r = || {
&mut this.x;
};
r()
}
Closes#16361.
[breaking-change]
Previously the lint considered cross-crate items only. That's
appropriate for unstable and experimental levels, but not for
deprecation.
Closes#16409
Due to deny(deprecation), this is a:
[breaking-change]
There was a bug in both libnative and libuv which prevented child processes from
being spawned correctly on windows when one of the arguments was an empty
string. The libuv bug has since been fixed upstream, and the libnative bug was
fixed as part of this commit.
When updating libuv, this also includes a fix for #15149.
Closes#15149Closes#16272
The fail macro defines some function/static items internally, which got
a dead_code warning when `fail!()` is used inside a dead function. This
is ugly and unnecessarily reveals implementation details, so the
warnings can be squashed.
Fixes#16192.
The fail macro defines some function/static items internally, which got
a dead_code warning when `fail!()` is used inside a dead function. This
is ugly and unnecessarily reveals implementation details, so the
warnings can be squashed.
Fixes#16192.
This generalises the behaviour with struct fields (which recieve no
dead_code warning if they have a leading _), and other similar lints, to
all items, e.g. `fn _foo() {} fn main() {}` has no warnings.
Extended `ast_map::Map` with an iterator over all node id's that match a path suffix.
Extended pretty printer to let users choose particular items to pretty print, either by indicating an integer node-id, or by providing a path suffix.
* Example 1: the suffix `typeck::check::check_struct` matches the item with the path `rustc::middle::typeck::check::check_struct` when compiling the `rustc` crate.
* Example 2: the suffix `and` matches `core::option::Option::and` and `core::result::Result::and` when compiling the `core` crate.
Refactored `pprust` slightly to support the pretty printer changes.
(See individual commits for more description.)
This requires avoiding `quote_...!` for constructing the parts of the
__test module, since that stringifies and reinterns the idents, losing
the special gensym'd nature of them. (#15962.)
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This requires avoiding `quote_...!` for constructing the parts of the
__test module, since that stringifies and reinterns the idents, losing
the special gensym'd nature of them. (#15962.)
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
This commit stabilizes the `std::sync::atomics` module, renaming it to
`std::sync::atomic` to match library precedent elsewhere, and tightening
up behavior around incorrect memory ordering annotations.
The vast majority of the module is now `stable`. However, the
`AtomicOption` type has been deprecated, since it is essentially unused
and is not truly a primitive atomic type. It will eventually be replaced
by a higher-level abstraction like MVars.
Due to deprecations, this is a:
[breaking-change]
Generic extern functions written in Rust have their names mangled, as well as their internal clownshoe __rust_abi functions. This allows e.g. specific monomorphizations of these functions to be used as callbacks.
Closes#12502.
There was a bug in both libnative and libuv which prevented child processes from
being spawned correctly on windows when one of the arguments was an empty
string. The libuv bug has since been fixed upstream, and the libnative bug was
fixed as part of this commit.
When updating libuv, this also includes a fix for #15149.
Closes#15149Closes#16272
This ended up passing through the lexer but dying later on in parsing when it
wasn't handled. The strategy taken was to copy the `str_lit` funciton, but adapt
it for bytes.
Closes#16278
Fixes missing overflow lint for i64 #14269
The `type_overflow` lint, doesn't catch the overflow for `i64` because the overflow happens earlier in the parse phase when the `u64` as biggest possible int gets casted to `i64` , without checking the for
overflows.
We can't lint in the parse phase, so we emit a compiler error, as we do for overflowing `u64`
Perhaps a consistent behaviour would be to emit a parse error for *all* overflowing integer types.
See #14269
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
This commit stabilizes the `std::sync::atomics` module, renaming it to
`std::sync::atomic` to match library precedent elsewhere, and tightening
up behavior around incorrect memory ordering annotations.
The vast majority of the module is now `stable`. However, the
`AtomicOption` type has been deprecated, since it is essentially unused
and is not truly a primitive atomic type. It will eventually be replaced
by a higher-level abstraction like MVars.
Due to deprecations, this is a:
[breaking-change]
As discovered in #15460, a particular #[link(kind = "static", ...)] line is not
actually guaranteed to link the library at all. The reason for this is that if
the external library doesn't have any referenced symbols in the object generated
by rustc, the entire library is dropped by the linker.
For dynamic native libraries, this is solved by passing -lfoo for all downstream
compilations unconditionally. For static libraries in rlibs this is solved
because the entire archive is bundled in the rlib. The only situation in which
this was a problem was when a static native library was linked to a rust dynamic
library.
This commit brings the behavior of dylibs in line with rlibs by passing the
--whole-archive flag to the linker when linking native libraries. On OSX, this
uses the -force_load flag. This flag ensures that the entire archive is
considered candidate for being linked into the final dynamic library.
This is a breaking change because if any static library is included twice in the
same compilation unit then the linker will start emitting errors about duplicate
definitions now. The fix for this would involve only statically linking to a
library once.
Closes#15460
[breaking-change]
Using the Show impl for Names created global symbols with names like
`"str\"str\"(1027)"`. This adjusts strings, binaries and vtables to
avoid using that impl.
Fixes#15799.
This is an alternative to upgrading the way rvalues are handled in the
borrow check. Making rvalues handled more like lvalues in the borrow
check caused numerous problems related to double mutable borrows and
rvalue scopes. Rather than come up with more borrow check rules to try
to solve these problems, I decided to just forbid pattern bindings after
`@`. This affected fewer than 10 lines of code in the compiler and
libraries.
This breaks code like:
match x {
y @ z => { ... }
}
match a {
b @ Some(c) => { ... }
}
Change this code to use nested `match` or `let` expressions. For
example:
match x {
y => {
let z = y;
...
}
}
match a {
Some(c) => {
let b = Some(c);
...
}
}
Closes#14587.
[breaking-change]
Closes#16097 (fix variable name in tutorial)
Closes#16100 (More defailbloating)
Closes#16104 (Fix deprecation commment on `core::cmp::lexical_ordering`)
Closes#16105 (fix formatting in pointer guide table)
Closes#16107 (remove serialize::ebml, add librbml)
Closes#16108 (Fix heading levels in pointer guide)
Closes#16109 (rustrt: Don't conditionally init the at_exit QUEUE)
Closes#16111 (hexfloat: Deprecate to move out of the repo)
Closes#16113 (Add examples for GenericPath methods.)
Closes#16115 (Byte literals!)
Closes#16116 (Add a non-regression test for issue #8372)
Closes#16120 (Deprecate semver)
Closes#16124 (Deprecate uuid)
Closes#16126 (Deprecate fourcc)
Closes#16127 (Remove incorrect example)
Closes#16129 (Add note about production deployments.)
Closes#16131 (librustc: Don't ICE when trying to subst regions in destructor call.)
Closes#16133 (librustc: Don't ICE with struct exprs where the name is not a valid struct.)
Closes#16136 (Implement slice::Vector for Option<T> and CVec<T>)
Closes#16137 (alloc, arena, test, url, uuid: Elide lifetimes.)
Not included are two required patches:
* LLVM: segmented stack support for DragonFly [1]
* jemalloc: simple configure patches
[1]: http://reviews.llvm.org/D4705
Our implementation of ebml has diverged from the standard in order
to better serve the needs of the compiler, so it doesn't make much
sense to call what we have ebml anyore. Furthermore, our implementation
is pretty crufty, and should eventually be rewritten into a format
that better suits the needs of the compiler. This patch factors out
serialize::ebml into librbml, otherwise known as the Really Bad
Markup Language. This is a stopgap library that shouldn't be used
by end users, and will eventually be replaced by something better.
[breaking-change]
Currently, each time a function is monomorphized, all items within that function are translated. This is unnecessary work because the inner items already get translated when the function declaration is visited by `trans_item`. This patch adds a flag to the `FunctionContext` to prevent translation of items during monomorphization.
Remove the ability of the borrow checker to determine that repeated
dereferences of a Box<T> refer to the same memory object. This will
usually require one of two workarounds:
1) The interior of a Box<T> will sometimes need to be moved / borrowed
into a temporary before moving / borrowing individual derived paths.
2) A `ref x` pattern will have to be replaced with a `box ref x`
pattern.
Fixes#16094.
[breaking-change]
Like with libnative, when a green task failed to spawn it would leave the world
in a corrupt state where the local scheduler had been dropped as well as the
local task. Also like libnative, this patch sets up a "bomb" which when it goes
off will restore the state of the world.
This adds support for `quote_arm!(cx, $pat => $expr)`, and `macro_rules!(($a:arm) => (...))`. It also fixes a bug in pretty printing, where this would generate invalid code:
```
match { 5i } {
1 => 2,
_ => 3,
}
```
It would generate this code:
```
match { 5i } {
1 => 2
_ => 3
}
```
Finally, it adds a couple helper methods to `ExtCtxt`.
When dealing with HTTP request or responses, many tokens are case-insensitive in the ASCII range but the bytes from the network are not necessarily valid UTF-8.
**[breaking-change]** Rather than adding new very similar traits, this re-uses the `std::ascii::OwnedStrAsciiExt` and `std::ascii::StrAsciiExt` traits, but rename to remove `Str` since that does not apply for bytes.
This PR also makes `std::ascii::ASCII_UPPER_MAP` and `std::ascii::ASCII_LOWER_MAP`, the lookup table all these methods are based on, public. In case there is something else related to ASCII case we haven’t thought of yet, that can be implemented outside of libstd without duplicating the tables.
Although this is a breaking change, I thought this could do without an RFC since the relevant traits are not in the prelude.
r? @alexcrichton
Closes#15296 (Update disclaimer to improve clarity and intent)
Closes#15804 (Don't ICE when dealing with the count expr for fixed array types in various places.)
Closes#15893 (lint: Improve ffi-unsafe enum lint warning)
Closes#16045 (Rename Integer divides to is_multiple_of.)
Closes#16055 (manual: update list of feature gates, add phase attribute)
Closes#16056 (Improve documentation of rounding functions)
Closes#16061 (Remove references to non-existant functions in the std::path documentation)
Closes#16062 (Fix documentation error in MutableVectorAllocating::move_from)
Closes#16063 (adding discuss.rust-lang to community)
Closes#16064 (rustc: Switch dsymutil status => output)
Closes#16066 (making raw source display better)
Closes#16079 (doc: add missing word)
Closes#16080 (Update LLVM to fix miscompilations due to wrongfully removed lifetime intrinsics)
Closes#16084 (Elide lifetimes around Arc<T>.)
Closes#16085 (Gedit/gtksourceview language spec: add raw strings)
Closes#16086 (Implement Hash for DList)
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
r? @pnkfelix
Everyone agreed except @thestinger. As @thestinger contribution on this file is trivial,
we can relicense it.
Related to #14248, close#15330
@brson OK?
This commit applies stability attributes to the contents of these modules,
summarized here:
* The `unit` and `bool` modules have become #[unstable] as they are purely meant
for documentation purposes and are candidates for removal.
* The `ty` module has been deprecated, and the inner `Unsafe` type has been
renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field
has been removed as the compiler now always infers `UnsafeCell` to be
invariant. The `new` method i stable, but the `value` field, `get` and
`unwrap` methods are all unstable.
* The `tuple` module has its name as stable, the naming of the `TupleN` traits
as stable while the methods are all #[unstable]. The other impls in the module
have appropriate stability for the corresponding trait.
* The `arc` module has received the exact same treatment as the `rc` module
previously did.
* The `any` module has its name as stable. The `Any` trait is also stable, with
a new private supertrait which now contains the `get_type_id` method. This is
to make the method a private implementation detail rather than a public-facing
detail.
The two extension traits in the module are marked #[unstable] as they will not
be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods
have been renamed to downcast_{mut,ref} and are #[unstable].
The extension trait `BoxAny` has been clarified as to why it is unstable as it
will not be necessary with DST.
This is a breaking change because the `marker1` field was removed from the
`UnsafeCell` type. To deal with this change, you can simply delete the field and
only specify the value of the `data` field in static initializers.
[breaking-change]
Rename and gensym the runtime on import, so that users
can't refer to the `native` crate.
This is unlikely to break code, but users should import the "native" crate directly.
[breaking-change]
cc @alexcrichton
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
method calls are involved.
This breaks code like:
impl<T:Copy> Foo for T { ... }
fn take_param<T:Foo>(foo: &T) { ... }
fn main() {
let x = box 3i; // note no `Copy` bound
take_param(&x);
}
Change this code to not contain a type error. For example:
impl<T:Copy> Foo for T { ... }
fn take_param<T:Foo>(foo: &T) { ... }
fn main() {
let x = 3i; // satisfies `Copy` bound
take_param(&x);
}
Closes#15860.
[breaking-change]
r? @alexcrichton
method calls are involved.
This breaks code like:
impl<T:Copy> Foo for T { ... }
fn take_param<T:Foo>(foo: &T) { ... }
fn main() {
let x = box 3i; // note no `Copy` bound
take_param(&x);
}
Change this code to not contain a type error. For example:
impl<T:Copy> Foo for T { ... }
fn take_param<T:Foo>(foo: &T) { ... }
fn main() {
let x = 3i; // satisfies `Copy` bound
take_param(&x);
}
Closes#15860.
[breaking-change]
librustc: Stop desugaring `for` expressions and translate them directly.
This makes edge cases in which the `Iterator` trait was not in scope
and/or `Option` or its variants were not in scope work properly.
This breaks code that looks like:
struct MyStruct { ... }
impl MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
for x in MyStruct { ... } { ... }
Change ad-hoc `next` methods like the above to implementations of the
`Iterator` trait. For example:
impl Iterator<int> for MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
Closes#15392.
[breaking-change]
This makes edge cases in which the `Iterator` trait was not in scope
and/or `Option` or its variants were not in scope work properly.
This breaks code that looks like:
struct MyStruct { ... }
impl MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
for x in MyStruct { ... } { ... }
Change ad-hoc `next` methods like the above to implementations of the
`Iterator` trait. For example:
impl Iterator<int> for MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
Closes#15392.
[breaking-change]
This is done entirely in the libraries for functions up to 16 arguments.
A macro is used so that more arguments can be easily added if we need.
Note that I had to adjust the overloaded call algorithm to not try
calling the overloaded call operator if the callee is a built-in
function type, to prevent loops.
Closes#15448.
This implements RFC 39. Omitted lifetimes in return values will now be
inferred to more useful defaults, and an error is reported if a lifetime
in a return type is omitted and one of the two lifetime elision rules
does not specify what it should be.
This primarily breaks two uncommon code patterns. The first is this:
unsafe fn get_foo_out_of_thin_air() -> &Foo {
...
}
This should be changed to:
unsafe fn get_foo_out_of_thin_air() -> &'static Foo {
...
}
The second pattern that needs to be changed is this:
enum MaybeBorrowed<'a> {
Borrowed(&'a str),
Owned(String),
}
fn foo() -> MaybeBorrowed {
Owned(format!("hello world"))
}
Change code like this to:
enum MaybeBorrowed<'a> {
Borrowed(&'a str),
Owned(String),
}
fn foo() -> MaybeBorrowed<'static> {
Owned(format!("hello world"))
}
Closes#15552.
[breaking-change]
r? @nick29581
This is accomplished by rewriting static expressions into equivalent patterns.
This way, patterns referencing static variables can both participate
in exhaustiveness analysis as well as be compiled down into the appropriate
branch of the decision trees that match expressions are codegened to.
Fixes#6533.
Fixes#13626.
Fixes#13731.
Fixes#14576.
Fixes#15393.
This implements RFC 39. Omitted lifetimes in return values will now be
inferred to more useful defaults, and an error is reported if a lifetime
in a return type is omitted and one of the two lifetime elision rules
does not specify what it should be.
This primarily breaks two uncommon code patterns. The first is this:
unsafe fn get_foo_out_of_thin_air() -> &Foo {
...
}
This should be changed to:
unsafe fn get_foo_out_of_thin_air() -> &'static Foo {
...
}
The second pattern that needs to be changed is this:
enum MaybeBorrowed<'a> {
Borrowed(&'a str),
Owned(String),
}
fn foo() -> MaybeBorrowed {
Owned(format!("hello world"))
}
Change code like this to:
enum MaybeBorrowed<'a> {
Borrowed(&'a str),
Owned(String),
}
fn foo() -> MaybeBorrowed<'static> {
Owned(format!("hello world"))
}
Closes#15552.
[breaking-change]
The first is to require that `#[crate_name]` and `--crate-name` always match (if both are specified). The second is to fix parallel compilation in cargo by mixing in `-C extra-filename` into the temporary outputs of the compiler.
When invoking the compiler in parallel, the intermediate output of the object
files and bytecode can stomp over one another if two crates with the same name
are being compiled.
The output file is already being disambiguated with `-C extra-filename`, so this
commit alters the naming of the temporary files to also mix in the extra
filename to ensure that file names don't clash.
This is accomplished by rewriting static expressions into equivalent patterns.
This way, patterns referencing static variables can both participate
in exhaustiveness analysis as well as be compiled down into the appropriate
branch of the decision trees that match expressions are codegened to.
Fixes#6533.
Fixes#13626.
Fixes#13731.
Fixes#14576.
Fixes#15393.
Part of the original discussions around the `--crate-name` flag brought up that
mass confusion can arise when the flag specifies a different name than is
contained in the crate.
The current primary use case of the `--crate-name` flag is through cargo and
not requiring a `#[crate_name]` attribute, but if the `#[crate_name]` attribute
is specified it will likely go awry when the two names deviate from one another.
This commit requires that if both are provided they both match to prevent this
confusion.
Importing from types was disallowed in #6462. Flag was set for paths whether it is a module or a type. Type flag was set when impl was seen. The problem is, for cross-crate situations, when reexport is involved, it is possible that impl is seen too late because metadata is loaded lazily.
Fix#15664.
This small patch causes the stability lint to bail out when traversing
any AST produced via a macro expansion. Ultimately, we would like to
lint the contents of the macro at the place where the macro is defined,
but regardless we should not be linting it at the use site.
Closes#15703
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]