Add initial implementation of HIR-based WF checking for diagnostics
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
During well-formed checking, we walk through all types 'nested' in
generic arguments. For example, WF-checking `Option<MyStruct<u8>>`
will cause us to check `MyStruct<u8>` and `u8`. However, this is done
on a `rustc_middle::ty::Ty`, which has no span information. As a result,
any errors that occur will have a very general span (e.g. the
definintion of an associated item).
This becomes a problem when macros are involved. In general, an
associated type like `type MyType = Option<MyStruct<u8>>;` may
have completely different spans for each nested type in the HIR. Using
the span of the entire associated item might end up pointing to a macro
invocation, even though a user-provided span is available in one of the
nested types.
This PR adds a framework for HIR-based well formed checking. This check
is only run during error reporting, and is used to obtain a more precise
span for an existing error. This is accomplished by individually
checking each 'nested' type in the HIR for the type, allowing us to
find the most-specific type (and span) that produces a given error.
The majority of the changes are to the error-reporting code. However,
some of the general trait code is modified to pass through more
information.
Since this has no soundness implications, I've implemented a minimal
version to begin with, which can be extended over time. In particular,
this only works for HIR items with a corresponding `DefId` (e.g. it will
not work for WF-checking performed within function bodies).
TAIT: Infer all inference variables in opaque type substitutions via InferCx
The previous algorithm was correct for the example given in its
documentation, but when the TAIT was declared as a free item
instead of an associated item, the generic parameters were the
wrong ones.
cc `@spastorino`
r? `@nikomatsakis`
Use diagnostic items instead of lang items for rfc2229 migrations
This PR removes the `Send`, `UnwindSafe` and `RefUnwindSafe` lang items introduced in https://github.com/rust-lang/rust/pull/84730, and uses diagnostic items instead to check for `Send`, `UnwindSafe` and `RefUnwindSafe` traits for RFC2229 migrations.
r? ```@nikomatsakis```
Query-ify global limit attribute handling
Currently, we read various 'global limits' from inner attributes the crate root (`recursion_limit`, `move_size_limit`, `type_length_limit`, `const_eval_limit`). These limits are then stored in `Sessions`, allowing them to be access from a `TyCtxt` without registering a dependency on the crate root attributes.
This PR moves the calculation of these global limits behind queries, so that we properly track dependencies on crate root attributes. During the setup of macro expansion (before we've created a `TyCtxt`), we need to access the recursion limit, which is now done by directly calling into the code shared by the normal query implementations.
Hack: Ignore inference variables in certain queries
Fixes#84841Fixes#86753
Some queries are not built to accept types with inference variables, which can lead to ICEs. These queries probably ought to be converted to canonical form, but as a quick workaround, we can return conservative results in the case that inference variables are found.
We should file a follow-up issue (and update the FIXMEs...) to do the proper refactoring.
cc `@arora-aman`
r? `@oli-obk`
Return `EvaluatedToOk` when type in outlives predicate is global
A global type doesn't reference any local regions or types, so it's
guaranteed to outlive any region.
Better errors for Debug and Display traits
Currently, if someone tries to pass value that does not implement `Debug` or `Display` to a formatting macro, they get a very verbose and confusing error message. This PR changes the error messages for missing `Debug` and `Display` impls to be less overwhelming in this case, as suggested by #85844. I was a little less aggressive in changing the error message than that issue proposed. Still, this implementation would be enough to reduce the number of messages to be much more manageable.
After this PR, information on the cause of an error involving a `Debug` or `Display` implementation would suppressed if the requirement originated within a standard library macro. My reasoning was that errors originating from within a macro are confusing when they mention details that the programmer can't see, and this is particularly problematic for `Debug` and `Display`, which are most often used via macros. It is possible that either a broader or a narrower criterion would be better. I'm quite open to any feedback.
Fixes#85844.
deal with `const_evaluatable_checked` in `ConstEquate`
Failing to evaluate two constants which do not contain inference variables should not result in ambiguity.
Bump bootstrap compiler to beta 1.53.0
This PR bumps the bootstrap compiler to version 1.53.0 beta, as part of our usual release process (this was supposed to be Wednesday's step, but creating the beta release took longer than expected).
The PR also includes the "Bootstrap: skip rustdoc fingerprint for building docs" commit, see the reasoning [on Zulip](https://zulip-archive.rust-lang.org/241545trelease/88450153betabootstrap.html).
r? `@Mark-Simulacrum`
Extend `rustc_on_implemented` to improve more `?` error messages
`_Self` could match the generic definition; this adds that functionality for matching the generic definition of type parameters too.
Your advice welcome on the wording of all these messages, and which things belong in the message/label/note.
r? `@estebank`
Always produce sub-obligations when using cached projection result
See https://github.com/rust-lang/rust/issues/85360
When we skip adding the sub-obligations to the `obligation` list, we can affect whether or not the final result is `EvaluatedToOk` or `EvaluatedToOkModuloObligations`. This creates problems for incremental compilation, since the projection cache is untracked shared state.
To solve this issue, we unconditionally process the sub-obligations. Surprisingly, this is a slight performance *win* in many cases.
Suggest borrowing if a trait implementation is found for &/&mut <type>
This pull request fixes#84973 by suggesting to borrow if a trait is not implemented for some type `T`, but it is for `&T` or `&mut T`. For instance:
```rust
trait Ti {}
impl<T> Ti for &T {}
fn foo<T: Ti>(_: T) {}
trait Tm {}
impl<T> Tm for &mut T {}
fn bar<T: Tm>(_: T) {}
fn main() {
let a: i32 = 5;
foo(a);
let b: Box<i32> = Box::new(42);
bar(b);
}
```
gives, on current nightly:
```
error[E0277]: the trait bound `i32: Ti` is not satisfied
--> t2.rs:11:9
|
3 | fn foo<T: Ti>(_: T) {}
| -- required by this bound in `foo`
...
11 | foo(a);
| ^ the trait `Ti` is not implemented for `i32`
error[E0277]: the trait bound `Box<i32>: Tm` is not satisfied
--> t2.rs:14:9
|
7 | fn bar<T: Tm>(_: T) {}
| -- required by this bound in `bar`
...
14 | bar(b);
| ^ the trait `Tm` is not implemented for `Box<i32>`
error: aborting due to 2 previous errors
```
whereas with my changes, I get:
```
error[E0277]: the trait bound `i32: Ti` is not satisfied
--> t2.rs:11:9
|
3 | fn foo<T: Ti>(_: T) {}
| -- required by this bound in `foo`
...
11 | foo(a);
| ^
| |
| expected an implementor of trait `Ti`
| help: consider borrowing here: `&a`
error[E0277]: the trait bound `Box<i32>: Tm` is not satisfied
--> t2.rs:14:9
|
7 | fn bar<T: Tm>(_: T) {}
| -- required by this bound in `bar`
...
14 | bar(b);
| ^
| |
| expected an implementor of trait `Tm`
| help: consider borrowing mutably here: `&mut b`
error: aborting due to 2 previous errors
```
In my implementation, I have added a "blacklist" to make these suggestions flexible. In particular, suggesting to borrow can interfere with other suggestions, such as to add another trait bound to a generic argument. I have tried to configure this blacklist to cause the least amount of test case failures, i.e. to model the current behavior as closely as possible (I only had to change one existing test case, and this change was quite clearly an improvement).
This adds a new lint to `rustc` that is used in rustdoc when a code
block is empty or cannot be parsed as valid Rust code.
Previously this was unconditionally a warning. As such some
documentation comments were (unknowingly) abusing this to pass despite
the `-Dwarnings` used when compiling `rustc`, this should not be the
case anymore.