Enable parallel codegen (2 units) by default when --opt-level is 0 or 1. This
gives a minor speedup on large crates (~10%), with only a tiny slowdown (~2%)
for small ones (which usually build in under a second regardless). The current
default (no parallelization) is used when the user requests optimization
(--opt-level 2 or 3), and when the user has enabled LTO (which is incompatible
with parallel codegen).
This commit also changes the rust build system to use parallel codegen
when appropriate. This means codegen-units=4 for stage0 always, and
also for stage1 and stage2 when configured with --disable-optimize.
(Other settings use codegen-units=1 for stage1 and stage2, to get
maximum performance for release binaries.) The build system also sets
codegen-units=1 for compiletest tests (compiletest does its own
parallelization) and uses the same setting as stage2 for crate tests.
----
To reproduce issue on commit ba246100ca
it does not suffice to add just `check-build-compiletest` to
`check-secondary`; one must also ensure that `check-build-compiletest`
precedes the satisification of the `check` rule.
Otherwise hidden dependencies of `compiletest` would end up getting
satisfied when make builds `rustc` at each stage in order to
eventually run `check-stage2`.
So to handle that I moved `check-secondary` before `check` in the
`check-all` rule that bors uses, and for good measure, I also put
`check-build-compiltest` at the front of the `check-secondary` rule's
dependencies.
My understanding is that running `check-secondary` should be
relatively cheap, and thus such a reordering will not hurt bors.
----
Fix#17883.
We'll use this to run a subset of the test suite onto a dedicated
bot.
This puts the grammar tests and the pretty-printer tests under
check-secondary. It leanves the pretty tests under plain `check`
for now, until the new bot is added to take over.
Because check-secondary is not run as part of `make check` there
will be a set of tests that most users never run and are only
checked by bors. I think this will be ok because grammar tests
should rarely regress, and the people regressing such tests
should have the fortitude to deal with it.
Add libunicode; move unicode functions from core
- created new crate, libunicode, below libstd
- split `Char` trait into `Char` (libcore) and `UnicodeChar` (libunicode)
- Unicode-aware functions now live in libunicode
- `is_alphabetic`, `is_XID_start`, `is_XID_continue`, `is_lowercase`,
`is_uppercase`, `is_whitespace`, `is_alphanumeric`, `is_control`, `is_digit`,
`to_uppercase`, `to_lowercase`
- added `width` method in UnicodeChar trait
- determines printed width of character in columns, or None if it is a non-NULL control character
- takes a boolean argument indicating whether the present context is CJK or not (characters with 'A'mbiguous widths are double-wide in CJK contexts, single-wide otherwise)
- split `StrSlice` into `StrSlice` (libcore) and `UnicodeStrSlice` (libunicode)
- functionality formerly in `StrSlice` that relied upon Unicode functionality from `Char` is now in `UnicodeStrSlice`
- `words`, `is_whitespace`, `is_alphanumeric`, `trim`, `trim_left`, `trim_right`
- also moved `Words` type alias into libunicode because `words` method is in `UnicodeStrSlice`
- unified Unicode tables from libcollections, libcore, and libregex into libunicode
- updated `unicode.py` in `src/etc` to generate aforementioned tables
- generated new tables based on latest Unicode data
- added `UnicodeChar` and `UnicodeStrSlice` traits to prelude
- libunicode is now the collection point for the `std::char` module, combining the libunicode functionality with the `Char` functionality from libcore
- thus, moved doc comment for `char` from `core::char` to `unicode::char`
- libcollections remains the collection point for `std::str`
The Unicode-aware functions that previously lived in the `Char` and `StrSlice` traits are no longer available to programs that only use libcore. To regain use of these methods, include the libunicode crate and `use` the `UnicodeChar` and/or `UnicodeStrSlice` traits:
extern crate unicode;
use unicode::UnicodeChar;
use unicode::UnicodeStrSlice;
use unicode::Words; // if you want to use the words() method
NOTE: this does *not* impact programs that use libstd, since UnicodeChar and UnicodeStrSlice have been added to the prelude.
closes#15224
[breaking-change]
- unicode tests live in coretest crate
- libcollections str tests need UnicodeChar trait.
- libregex perlw tests were checking a char in the Alphabetic category,
\x2161. Confirmed perl 5.18 considers this a \w character. Changed to
\x2961, which is not \w as the test expects.
Libcore's test infrastructure is complicated by the fact that many lang
items are defined in the crate. The current approach (realcore/realstd
imports) is hacky and hard to work with (tests inside of core::cmp
haven't been run for months!).
Moving tests to a separate crate does mean that they can only test the
public API of libcore, but I don't feel that that is too much of an
issue. The only tests that I had to get rid of were some checking the
various numeric formatters, but those are also exercised through normal
format! calls in other tests.
Closes#14888 (Allow disabling jemalloc as the memory allocator)
Closes#14905 (rustc: Improve span for error about using a method as a field.)
Closes#14920 (Fix#14915)
Closes#14924 (Add a Syntastic plugin for Rust.)
Closes#14935 (debuginfo: Correctly handle indirectly recursive types)
Closes#14938 (Reexport `num_cpus` in `std::os`. Closes#14707)
Closes#14941 (std: Don't fail the task when a Future is dropped)
Closes#14942 (rustc: Don't mark type parameters as exported)
Closes#14943 (doc: Fix a link in the FAQ)
Closes#14944 (Update "use" to "uses" on ln186)
Closes#14949 (Update repo location)
Closes#14950 (fix typo in the libc crate)
Closes#14951 (Update Sublime Rust github link)
Closes#14953 (Fix --disable-rpath and tests)
This involved a few changes to the local build system:
* Makefiles now prefer our own LD_LIBRARY_PATH over the user's LD_LIBRARY_PATH
in order to support building rust with rust already installed.
* The compiletest program was taught to correctly pass through the aux dir as a
component of LD_LIBRARY_PATH in more situations.
This change was spliced out of #14832 to consist of just the fixes to running
tests without an rpath setting embedded in executables.
Two line summary: Distinguish HOST_RPATH and TARGET_RPATH; added
RPATH_LINK_SEARCH; skip tests broken in stage1; general cleanup.
`HOST_RPATH_VAR$(1)_T_$(2)_H_$(3)` and `TARGET_RPATH_VAR$(1)_T_$(2)_H_$(3)`
both match the format of the old `RPATH_VAR$(1)_T_$(2)_H_$(3)` (which
is still being set the same way that it was before, to one of either
HOST/TARGET depending on what stage we are building). Namely, the format
is <XXX>_RPATH_VAR = "<LD_LIB_PATH_ENVVAR>=<COLON_SEP_PATH_ENTRIES>"
What this commit does:
* Pass both of the (newly introduced) HOST and TARGET rpath setup vars
to `maketest.py`
* Update `maketest.py` to no longer update the LD_LIBRARY_PATH itself
Instead, it passes along the HOST and TARGET rpath setup vars in
environment variables `HOST_RPATH_ENV` and `TARGET_RPATH_ENV`
* Also, pass the current stage number to maketest.py; it in turn
passes it (via an env var) to run-make tests.
This allows the run-make tests to selectively change behavior
(e.g. turn themselves off) to deal with incompatibilities with
e.g. stage1.
* Cleanup: Distinguish in tools.mk between the command to run (`RUN`)
and the file to generate to drive that command (`RUN_BINFILE`). The
main thing this enables is that `RUN` can now setup the
`TARGET_RPATH_ENV` without having to dirty up the runner code in
each of the `run-make` Makefiles.
* Cleanup: Factored out commands to delete dylib/rlib into
REMOVE_DYLIBS/REMOVE_RLIBS.
There were places where we were only calling `rm $(call DYLIB,foo)`
even though we really needed to get rid of the whole glob (at least
based on alex's findings on #13753 that removing the symlink does not
suffice).
Therefore rather than peppering the code with the awkward
`rm $(TMPDIR)/$(call DYLIB_GLOB,foo)`, I instead introduced a common
`REMOVE_DYLIBS` user function that expands into that when called.
After I adding an analogous `REMOVE_RLIBS`, I changed all of the
existing calls that rm dylibs or rlibs to use these routines
instead.
Note that the latter is not a true refactoring since I may have
changed cases where it was our intent to only remove the sym-link.
(But if that is the case, then we need to more deeply investigate
alex's findings on #13753 where the system was still dynamically
loading up the non-symlinked libraries that it finds on the load
path.)
* Added RPATH_LINK_SEARCH command and use it on Linux.
On some platforms, namely Linux, when you have libboot.so that has
its internal rpath set (to e.g. $(ORIGIN)/path/to/HOSTDIR), the
linker still complains when you do the link step and it does not
know where to find libraries that libboot.so depends upon that live
in HOSTDIR (think e.g. librustuv.so).
As far as I can tell, the GNU linker will consult the
LD_LIBRARY_PATH as part of the linking process to find such
libraries. But if you want to be more careful and not override
LD_LIBRARY_PATH for the `gcc` invocation, then you need some other
way to tell the linker where it can find the libraries that
libboot.so needs. The solution to this on Linux is the
`-Wl,-rpath-link` command line option.
However, this command line option does not exist on Mac OS X, (which
appears to be figuring out how to resolve the libboot.dylib
dependency by some other means, perhaps by consulting the rpath
setting within libboot.dylib).
So, in order to abstract over this distinction, I added the
RPATH_LINK_SEARCH macro to the run-make infrastructure and added
calls to it where necessary to get Linux working. On architectures
other than Linux, the macro expands to nothing.
* Disable miscellaneous tests atop stage1.
* An especially interesting instance of the previous bullet point:
Excuse regex from doing rustdoc tests atop stage1.
This was a (nearly-) final step to get `make check-stage1` working
again.
The use of a special-case check for regex here is ugly but is
analogous other similar checks for regex such as the one that landed
in PR #13844.
The way this is written, the user will get a reminder that
doc-crate-regex is being skipped whenever their rules attempt to do
the crate documentation tests. This is deliberate: I want people
running `make check-stage1` to be reminded about which cases are
being skipped. (But if such echo noise is considered offensive, it
can obviously be removed.)
* Got windows working with the above changes.
This portion of the commit is a cleanup revision of the (previously
mentioned on try builds) re-architecting of how the LD_LIBRARY_PATH
setup and extension is handled in order to accommodate Windows' (1.)
use of `$PATH` for that purpose and (2.) use of spaces in `$PATH`
entries (problematic for make and for interoperation with tools at
the shell).
* In addition, since the code has been rearchitected to pass the
HOST_RPATH_DIR/TARGET_RPATH_DIR rather than a whole sh
environment-variable setting command, there is no need to for the
convert_path_spec calls in maketest.py, which in fact were put in
place to placate Windows but were now causing the Windows builds to
fail. Instead we just convert the paths to absolute paths just like
all of the other path arguments.
Also, note for makefile hackers: apparently you cannot quote operands
to `ifeq` in Makefile (or at least, you need to be careful about
adding them, e.g. to only one side).
The current suite of benchmarks for the standard distribution take a significant
amount of time to run, but it's unclear whether we're gaining any benefit from
running them. Some specific pain points:
* No one is looking at the data generated by the benchmarks. We have no graphs
or analysis of what's happening, so all the data is largely being cast into
the void.
* No benchmark has ever uncovered a bug, they have always run successfully.
* Benchmarks not only take a significant amount of time to run, but also take a
significant amount of time to compile. I don't think we should mitigate this
for now because it's useful to ensure that they do indeed still compile.
This commit disables --bench test runs by default as part of `make check`,
flipping the NO_BENCH environment variable to a PLEASE_BENCH variable which will
manually enable benchmarking. If and when a dedicated bot is set up for
benchmarking, this flag can be enabled on that bot.
There's no need to include this specific flag just for android. We can
already deal with what it tries to solve by using -C linker=/path/to/cc
and -C ar=/path/to/ar. The Makefiles for rustc already set this up when
we're crosscompiling.
I did add the flag to compiletest though so it can find gdb. Though, I'm
pretty sure we don't run debuginfo tests on android anyways right now.
[breaking-change]
This adds a `std::rt::heap` module with a nice allocator API. It's a
step towards fixing #13094 and is a starting point for working on a
generic allocator trait.
The revision used for the jemalloc submodule is the stable 3.6.0 release.
Closes#11807
Compile-fail tests for syntax extensions belong in this suite which has correct
dependencies on all artifacts rather than just the target artifacts.
Closes#13818