Stabilize std::os::unix::fs::chroot
I've verified that this works as documented, and I've tested it in (a nightly
build of) production software as a replacement for an unsafe call to
`libc::chroot`. It's been available in nightly for a few releases. I think it's
ready to stabilize.
---
Tracking issue: https://github.com/rust-lang/rust/issues/84715
Allow writing of incomplete UTF-8 sequences to the Windows console via stdout/stderr
# Problem
Writes of just an incomplete UTF-8 byte sequence (e.g. `b"\xC3"` or `b"\xF0\x9F"`) to stdout/stderr with a Windows console attached error with `io::ErrorKind::InvalidData, "Windows stdio in console mode does not support writing non-UTF-8 byte sequences"` even though further writes could complete the codepoint. This is currently a rare occurence since the [linewritershim](2c56ea38b0/library/std/src/io/buffered/linewritershim.rs) implementation flushes complete lines immediately and buffers up to 1024 bytes for incomplete lines. It can still happen as described in #83258.
The problem will become more pronounced once the developer can switch stdout/stderr from line-buffered to block-buffered or immediate when the changes in the "Switchable buffering for Stdout" pull request (#78515) get merged.
# Patch description
If there is at least one valid UTF-8 codepoint all valid UTF-8 is passed through to the extracted `write_valid_utf8_to_console()` fn. The new code only comes into play if `write()` is being passed a short byte slice comprising an incomplete UTF-8 codepoint. In this case up to three bytes are buffered in the `IncompleteUtf8` struct associated with `Stdout` / `Stderr`. The bytes are accepted one at a time. As soon as an error can be detected `io::ErrorKind::InvalidData, "Windows stdio in console mode does not support writing non-UTF-8 byte sequences"` is returned. Once a complete UTF-8 codepoint is received it is passed to the `write_valid_utf8_to_console()` and the buffer length is set to zero.
Calling `flush()` will neither error nor write anything if an incomplete codepoint is present in the buffer.
# Tests
Currently there are no Windows-specific tests for console writing code at all. Writing (regression) tests for this problem is a bit challenging since unit tests and UI tests don't run in a console and suddenly popping up another console window might be surprising to developers running the testsuite and it might not work at all in CI builds. To just test the new functionality in unit tests the code would need to be refactored. Some guidance on how to proceed would be appreciated.
# Public API changes
* `std::str::verifications::utf8_char_width()` would be exposed as `std::str::utf8_char_width()` behind the "str_internals" feature gate.
# Related issues
* Fixes#83258.
* PR #78515 will exacerbate the problem.
# Open questions
* Add tests?
* Squash into one commit with better commit message?
For two reasons:
1. Now that the suggestion span has been corrected, the output is a bit
cluttered and hard to read. Putting the suggestion its own window
creates more space.
2. It's easier to see what's being suggested, since now the version
after the suggestion is applied is shown.
(And same for tuple variants.)
Previously, the span was just for the constructor name, which meant it
would result in syntactically-invalid code when applied. Now, the span
is for the entire expression.
Reference new diagnostic item docs in our docs :)
The title says it all. The rustc dev guide now has some information about diagnostic items that are worthwhile linking to 🙃
---
changelog: none
rustdoc: Box `GenericArgs::Parenthesized.output`
Split out from #88379.
This reduces the size of `GenericArgs` from 104 bytes to 56 bytes,
essentially reducing it by half.
`GenericArgs` is one of the fields of `PathSegment`, so this should
reduce the amount of memory allocated for `PathSegment`s in the cases
where the generics are not for a `Fn`, `FnMut`, or `FnOnce` trait.
r? `@jyn514`
MIR lowering for `if let` expressions is now more complicated now that
`if let` exists in HIR. This PR adds a scope for the variables bound in
an `if let` expression and then uses an approach similar to how we
handle loops to ensure that we reliably drop the correct variables.