As part of the collections reform RFC, this commit removes all collections
traits in favor of inherent methods on collections themselves. All methods
should continue to be available on all collections.
This is a breaking change with all of the collections traits being removed and
no longer being in the prelude. In order to update old code you should move the
trait implementations to inherent implementations directly on the type itself.
Note that some traits had default methods which will also need to be implemented
to maintain backwards compatibility.
[breaking-change]
cc #18424
- The signature of the `*_equiv` methods of `HashMap` and similar structures have changed, and now require one less level of indirection. Change your code from:
``` rust
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
``` rust
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become `Sized?`. Downstream code must add `Sized?` to that method in their implementations. For example:
``` rust
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
``` rust
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
---
After review I'll squash the commits and update the commit message with the above paragraph.
r? @aturon
cc #16918
- The signature of the `*_equiv` methods of `HashMap` and similar structures
have changed, and now require one less level of indirection. Change your code
from:
```
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
```
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become
`Sized?`. Downstream code must add `Sized?` to that method in their
implementations. For example:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
This PR aims to improve the readability of diagnostic messages that involve unresolved type variables. Currently, messages like the following:
```rust
mismatched types: expected `core::result::Result<uint,()>`, found `core::option::Option<<generic #1>>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut <generic #2>`, found `uint`
<anon>:7 f(42u);
^~~
```
tend to appear unapproachable to new users. [0] While specific type var IDs are valuable in
diagnostics that deal with more than one such variable, in practice many messages
only mention one. In those cases, leaving out the specific number makes the messages
slightly less terrifying.
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut _`, found `uint`
<anon>:7 f(42u);
^~~
```
As you can see, I also tweaked the aesthetics slightly by changing type variables to use the type hole syntax _. For integer variables, the syntax used is:
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_#1i>`
<anon>:6 let a: Result<uint, ()> = Some(1);
```
and float variables:
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_#1f>`
<anon>:6 let a: Result<uint, ()> = Some(0.5);
```
[0] https://twitter.com/coda/status/517713085465772032
Closes https://github.com/rust-lang/rust/issues/2632.
Closes https://github.com/rust-lang/rust/issues/3404.
Closes https://github.com/rust-lang/rust/issues/18426.
This commit enables implementations of IndexMut for a number of collections,
including Vec, RingBuf, SmallIntMap, TrieMap, TreeMap, and HashMap. At the same
time this deprecates the `get_mut` methods on vectors in favor of using the
indexing notation.
cc #18424
Diagnostics such as the following
```
mismatched types: expected `core::result::Result<uint,()>`, found `core::option::Option<<generic #1>>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut <generic #2>`, found `uint`
<anon>:7 f(42u);
^~~
```
tend to be fairly unappealing to new users. While specific type var IDs are valuable in
diagnostics that deal with more than one such variable, in practice many messages
only mention one. In those cases, leaving out the specific number makes the messages
slightly less terrifying.
In addition, type variables have been changed to use the type hole syntax `_` in diagnostics.
With a variable ID, they're printed as `_#id` (e.g. `_#1`). In cases where the ID is left out,
it's simply `_`. Integer and float variables have an additional suffix after the number, e.g.
`_#1i` or `_#3f`.
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
This adds a `Substs` field to `ty_unboxed_closure` and plumbs basic
handling of it throughout the compiler. trans now correctly
monomorphizes captured free variables and llvm function defs. This
fixes uses of unboxed closures which reference a free type or region
parameter from their environment in either their signature or free
variables. Closes#16791
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
- Unify the representations of `cat_upvar` and `cat_copied_upvar`
- In `link_reborrowed_region`, account for the ability of upvars to
change their mutability due to later processing. A map of recursive
region links we may want to establish in the future is maintained,
with the links being established when the kind of the borrow is
adjusted.
- When categorizing upvars, add an explicit deref that represents the
closure environment pointer for closures that do not take the
environment by value. The region for the implicit pointer is an
anonymous free region type introduced for this purpose. This
creates the necessary constraint to prevent unsound reborrows from
the environment.
- Add a note to categorizations to make it easier to tell when extra
dereferences have been inserted by an upvar without having to
perform deep pattern matching.
- Adjust borrowck to deal with the changes. Where `cat_upvar` and
`cat_copied_upvar` were previously treated differently, they are
now both treated roughly like local variables within the closure
body, as the explicit derefs now ensure proper behavior. However,
error diagnostics had to be changed to explicitly look through the
extra dereferences to avoid producing confusing messages about
references not present in the source code.
Closes issue #17403. Remaining work:
- The error diagnostics that result from failed region inference are
pretty inscrutible and should be improved.
Code like the following is now rejected:
let mut x = 0u;
let f = || &mut x;
let y = f();
let z = f(); // multiple mutable references to the same location
This also breaks code that uses a similar construction even if it does
not go on to violate aliasability semantics. Such code will need to
be reworked in some way, such as by using a capture-by-value closure
type.
[breaking-change]
Modify ast::ExprMatch to include a new value of type ast::MatchSource,
making it easy to tell whether the match was written literally or
produced via desugaring. This allows us to customize error messages
appropriately.
over inherent methods accessible via more autoderefs.
This simplifies the trait matching algorithm. It breaks code like:
impl Foo {
fn foo(self) {
// before this change, this will be called
}
}
impl<'a,'b,'c> Trait for &'a &'b &'c Foo {
fn foo(self) {
// after this change, this will be called
}
}
fn main() {
let x = &(&(&Foo));
x.foo();
}
To explicitly indicate that you wish to call the inherent method, perform
explicit dereferences. For example:
fn main() {
let x = &(&(&Foo));
(***x).foo();
}
Part of #17282.
[breaking-change]
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
This unifies the `non_snake_case_functions` and `uppercase_variables` lints
into one lint, `non_snake_case`. It also now checks for non-snake-case modules.
This also extends the non-camel-case types lint to check type parameters, and
merges the `non_uppercase_pattern_statics` lint into the
`non_uppercase_statics` lint.
Because the `uppercase_variables` lint is now part of the `non_snake_case`
lint, all non-snake-case variables that start with lowercase characters (such
as `fooBar`) will now trigger the `non_snake_case` lint.
New code should be updated to use the new `non_snake_case` lint instead of the
previous `non_snake_case_functions` and `uppercase_variables` lints. All use of
the `non_uppercase_pattern_statics` should be replaced with the
`non_uppercase_statics` lint. Any code that previously contained non-snake-case
module or variable names should be updated to use snake case names or disable
the `non_snake_case` lint. Any code with non-camel-case type parameters should
be changed to use camel case or disable the `non_camel_case_types` lint.
[breaking-change]
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This makes edge cases in which the `Iterator` trait was not in scope
and/or `Option` or its variants were not in scope work properly.
This breaks code that looks like:
struct MyStruct { ... }
impl MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
for x in MyStruct { ... } { ... }
Change ad-hoc `next` methods like the above to implementations of the
`Iterator` trait. For example:
impl Iterator<int> for MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
Closes#15392.
[breaking-change]
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.
This relates to #13885. This does not remove `~self` from the language
yet, however.
[breaking-change]
This basically meant changing the interface so that no borrowed `&Vec`
is exposed, by hiding `fn get_vec` and `fn get_mut_vec` and revising
`fn all_vecs`.
Instead, clients should use one of the other methods; `get_slice`,
`pop`, `truncate`, `replace`, `push_all`, or `is_empty_in`, which
should work for any case currently used in rustc.
This change registers new snapshots, allowing `*T` to be removed from the language. This is a large breaking change, and it is recommended that if compiler errors are seen that any FFI calls are audited to determine whether they should be actually taking `*mut T`.
This will break code like:
fn f(x: &mut int) {}
let mut a = box 1i;
f(a);
Change it to:
fn f(x: &mut int) {}
let mut a = box 1i;
f(&mut *a);
RFC 33; issue #10504.
[breaking-change]
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
This is just a cleanup of the code. Doesn't really change anything deep about the way we operate. This is a prelude to implementing a good solution for one-way matching for #5527.
r? @pnkfelix (we were just crawling about this code, after all)
Use ty_rptr/ty_uniq(ty_trait) rather than TraitStore to represent trait types.
Also addresses (but doesn't close) #12470.
Part of the work towards DST (#12938).
[breaking-change] lifetime parameters in `&mut trait` are now invariant. They used to be contravariant.
the leading quote part of the identifier for the purposes of hygiene.
This adopts @jbclements' solution to #14539.
I'm not sure if this is a breaking change or not.
Closes#12512.
[breaking-change]
parameters
This involves numerous substeps:
1. Treat Self same as any other parameter.
2. No longer compute offsets for method parameters.
3. Store all generic types (both trait/impl and method) with a method,
eliminating odd discrepancies.
4. Stop doing unspeakable things to static methods and instead just use
the natural types, now that we can easily add the type parameters from
trait into the method's polytype.
5. No doubt some more. It was hard to separate these into distinct commits.
Fixes#13564
* The select/plural methods from format strings are removed
* The # character no longer needs to be escaped
* The \-based escapes have been removed
* '{{' is now an escape for '{'
* '}}' is now an escape for '}'
Closes#14810
[breaking-change]
This commit uses the same trick as ~/Box to map Gc<T> to @T internally inside
the compiler. This moves a number of implementations of traits to the `gc`
module in the standard library.
This removes functions such as `Gc::new`, `Gc::borrow`, and `Gc::ptr_eq` in
favor of the more modern equivalents, `box(GC)`, `Deref`, and pointer equality.
The Gc pointer itself should be much more useful now, and subsequent commits
will move the compiler away from @T towards Gc<T>
[breaking-change]
This commit carries out the request from issue #14678:
> The method `Iterator::len()` is surprising, as all the other uses of
> `len()` do not consume the value. `len()` would make more sense to be
> called `count()`, but that would collide with the current
> `Iterator::count(|T| -> bool) -> unit` method. That method, however, is
> a bit redundant, and can be easily replaced with
> `iter.filter(|x| x < 5).count()`.
> After this change, we could then define the `len()` method
> on `iter::ExactSize`.
Closes#14678.
[breaking-change]
This completes the last stage of the renaming of the comparison hierarchy of
traits. This change renames TotalEq to Eq and TotalOrd to Ord.
In the future the new Eq/Ord will be filled out with their appropriate methods,
but for now this change is purely a renaming change.
[breaking-change]
When printing doc comments, always put a newline after them in a macro
invocation to ensure that a line-doc-comment doesn't consume remaining tokens on
the line.
Integers are always parsed as a u64 in libsyntax, but they're stored as i64. The
parser and pretty printer both printed an i64 instead of u64, sometimes
introducing an extra negative sign.
Printing <no-bounds> on trait objects comes from a time when trait
objects had a non-empty default bounds set. As they no longer have any
default bounds, printing <no-bounds> is just noise.