So far, the source location an LLVM instruction was linked to was controlled by
`debuginfo::set_source_location()` and `debuginfo::clear_source_location()`.
This interface mimicked how LLVM's `IRBuilder` handles debug location
assignment. While this interface has some theoretical performance benefits, it
also makes things terribly unstable: One sets some quasi-global state and then
hopes that it is still correct when a given instruction is emitted---an
assumption that has been proven to not hold a bit too often.
This patch requires the debug source location to be passed to the actual
instruction emitting function. This makes source location assignment explicit
and will prevent future changes to `trans` from accidentally breaking things in
the majority of cases.
This patch does not yet implement the new principle for all instruction kinds
but the stepping experience should have improved significantly nonetheless
already.
Currently even small fixed-size arrays are passed as indirect
parameters, which seems to be just an oversight. Let's handle them the
same as structs of the same size, passing them as immediate values.
Currently we pass a `struct S(u64)` as an immediate value on i686, but a
`struct S { x: u64 }` is passed indirectly. This seems pretty wrong,
as they both have the same underlying LLVM type `{ i64 }`, no sense in
treating them differently.
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
This commit is an implementation of [RFC 494][rfc] which removes the entire
`std::c_vec` module and redesigns the `std::c_str` module as `std::ffi`.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0494-c_str-and-c_vec-stability.md
The interface of the new `CString` is outlined in the linked RFC, the primary
changes being:
* The `ToCStr` trait is gone, meaning the `with_c_str` and `to_c_str` methods
are now gone. These two methods are replaced with a `CString::from_slice`
method.
* The `CString` type is now just a wrapper around `Vec<u8>` with a static
guarantee that there is a trailing nul byte with no internal nul bytes. This
means that `CString` now implements `Deref<Target = [c_char]>`, which is where
it gains most of its methods from. A few helper methods are added to acquire a
slice of `u8` instead of `c_char`, as well as including a slice with the
trailing nul byte if necessary.
* All usage of non-owned `CString` values is now done via two functions inside
of `std::ffi`, called `c_str_to_bytes` and `c_str_to_bytes_with_nul`. These
functions are now the one method used to convert a `*const c_char` to a Rust
slice of `u8`.
Many more details, including newly deprecated methods, can be found linked in
the RFC. This is a:
[breaking-change]
Closes#20444
`UnboxedClosureTyper`. This requires adding a `tcx` field to
`ParameterEnvironment` but generally simplifies everything since we
only need to pass along an `UnboxedClosureTyper` or `Typer`.
which should always result in an error.
NB. Some of the hunks in this commit rely on a later commit which adds
`tcx` into `param_env` and modifies `ParameterEnvironment` to
implement `Typer`.