The breaking changes are:
* Changed `DList::insert_ordered` to use `TotalOrd`, not `Ord`
* Changed `PriorityQueue` to use `TotalOrd`, not `Ord`
* Deprecated `PriorityQueue::maybe_top()` (renamed to replace `PriorityQueue::top()`)
* Deprecated `PriorityQueue::maybe_pop()` (renamed to replace `PriorityQueue::pop()`)
* Deprecated `PriorityQueue::to_vec()` (renamed to `PriorityQueue::into_vec()`)
* Deprecated `PriorityQueue::to_sorted_vec()` (renamed to `PriorityQueue::into_sorted_vec()`)
* Changed `PriorityQueue::replace(...)` to return an `Option<T>` instead of failing when the queue is empty.
[breaking-change]
This is an implementation of RFC 16. A module can now only be loaded if the
module declaring `mod name;` "owns" the current directory. A module is
considered as owning its directory if it meets one of the following criteria:
* It is the top-level crate file
* It is a `mod.rs` file
* It was loaded via `#[path]`
* It was loaded via `include!`
* The module was declared via an inline `mod foo { ... }` statement
For example, this directory structure is now invalid
// lib.rs
mod foo;
// foo.rs
mod bar;
// bar.rs;
fn bar() {}
With this change `foo.rs` must be renamed to `foo/mod.rs`, and `bar.rs` must be
renamed to `foo/bar.rs`. This makes it clear that `bar` is a submodule of `foo`,
and can only be accessed through `foo`.
RFC: 0016-module-file-system-hierarchy
Closes#14180
[breaking-change]
Fix#13732.
This is a revised, much less hacky form of PR #13753
The changes here:
* add instrumentation to aid debugging of linkage errors,
* fine tune some things in the Makefile where we are telling binaries to use a host-oriented path for finding dynamic libraries, when it should be feeding the binaries a target-oriented path for dynamic libraries.
* pass along the current stage number to run-make tests, and
* skip certain tests when running atop stage1.
Fix#13746 as well.
Two line summary: Distinguish HOST_RPATH and TARGET_RPATH; added
RPATH_LINK_SEARCH; skip tests broken in stage1; general cleanup.
`HOST_RPATH_VAR$(1)_T_$(2)_H_$(3)` and `TARGET_RPATH_VAR$(1)_T_$(2)_H_$(3)`
both match the format of the old `RPATH_VAR$(1)_T_$(2)_H_$(3)` (which
is still being set the same way that it was before, to one of either
HOST/TARGET depending on what stage we are building). Namely, the format
is <XXX>_RPATH_VAR = "<LD_LIB_PATH_ENVVAR>=<COLON_SEP_PATH_ENTRIES>"
What this commit does:
* Pass both of the (newly introduced) HOST and TARGET rpath setup vars
to `maketest.py`
* Update `maketest.py` to no longer update the LD_LIBRARY_PATH itself
Instead, it passes along the HOST and TARGET rpath setup vars in
environment variables `HOST_RPATH_ENV` and `TARGET_RPATH_ENV`
* Also, pass the current stage number to maketest.py; it in turn
passes it (via an env var) to run-make tests.
This allows the run-make tests to selectively change behavior
(e.g. turn themselves off) to deal with incompatibilities with
e.g. stage1.
* Cleanup: Distinguish in tools.mk between the command to run (`RUN`)
and the file to generate to drive that command (`RUN_BINFILE`). The
main thing this enables is that `RUN` can now setup the
`TARGET_RPATH_ENV` without having to dirty up the runner code in
each of the `run-make` Makefiles.
* Cleanup: Factored out commands to delete dylib/rlib into
REMOVE_DYLIBS/REMOVE_RLIBS.
There were places where we were only calling `rm $(call DYLIB,foo)`
even though we really needed to get rid of the whole glob (at least
based on alex's findings on #13753 that removing the symlink does not
suffice).
Therefore rather than peppering the code with the awkward
`rm $(TMPDIR)/$(call DYLIB_GLOB,foo)`, I instead introduced a common
`REMOVE_DYLIBS` user function that expands into that when called.
After I adding an analogous `REMOVE_RLIBS`, I changed all of the
existing calls that rm dylibs or rlibs to use these routines
instead.
Note that the latter is not a true refactoring since I may have
changed cases where it was our intent to only remove the sym-link.
(But if that is the case, then we need to more deeply investigate
alex's findings on #13753 where the system was still dynamically
loading up the non-symlinked libraries that it finds on the load
path.)
* Added RPATH_LINK_SEARCH command and use it on Linux.
On some platforms, namely Linux, when you have libboot.so that has
its internal rpath set (to e.g. $(ORIGIN)/path/to/HOSTDIR), the
linker still complains when you do the link step and it does not
know where to find libraries that libboot.so depends upon that live
in HOSTDIR (think e.g. librustuv.so).
As far as I can tell, the GNU linker will consult the
LD_LIBRARY_PATH as part of the linking process to find such
libraries. But if you want to be more careful and not override
LD_LIBRARY_PATH for the `gcc` invocation, then you need some other
way to tell the linker where it can find the libraries that
libboot.so needs. The solution to this on Linux is the
`-Wl,-rpath-link` command line option.
However, this command line option does not exist on Mac OS X, (which
appears to be figuring out how to resolve the libboot.dylib
dependency by some other means, perhaps by consulting the rpath
setting within libboot.dylib).
So, in order to abstract over this distinction, I added the
RPATH_LINK_SEARCH macro to the run-make infrastructure and added
calls to it where necessary to get Linux working. On architectures
other than Linux, the macro expands to nothing.
* Disable miscellaneous tests atop stage1.
* An especially interesting instance of the previous bullet point:
Excuse regex from doing rustdoc tests atop stage1.
This was a (nearly-) final step to get `make check-stage1` working
again.
The use of a special-case check for regex here is ugly but is
analogous other similar checks for regex such as the one that landed
in PR #13844.
The way this is written, the user will get a reminder that
doc-crate-regex is being skipped whenever their rules attempt to do
the crate documentation tests. This is deliberate: I want people
running `make check-stage1` to be reminded about which cases are
being skipped. (But if such echo noise is considered offensive, it
can obviously be removed.)
* Got windows working with the above changes.
This portion of the commit is a cleanup revision of the (previously
mentioned on try builds) re-architecting of how the LD_LIBRARY_PATH
setup and extension is handled in order to accommodate Windows' (1.)
use of `$PATH` for that purpose and (2.) use of spaces in `$PATH`
entries (problematic for make and for interoperation with tools at
the shell).
* In addition, since the code has been rearchitected to pass the
HOST_RPATH_DIR/TARGET_RPATH_DIR rather than a whole sh
environment-variable setting command, there is no need to for the
convert_path_spec calls in maketest.py, which in fact were put in
place to placate Windows but were now causing the Windows builds to
fail. Instead we just convert the paths to absolute paths just like
all of the other path arguments.
Also, note for makefile hackers: apparently you cannot quote operands
to `ifeq` in Makefile (or at least, you need to be careful about
adding them, e.g. to only one side).
See #13983 and #14000.
Fix was originally authored by alexcrichton and then rebased a couple
times by pnkfelix, most recently atop PR 13954.
----
Regarding the change to librustdoc/lib.rs, to do `map_err` before
unwrapping a `TqskResult`: I do not understand how master is passing
without this change or something like it, since `Box<Any:Send>` does
not implement `Show`. (Is this something that is only a problem for
the snapshot stage0 compiler?) Still, the change I have put in here
(which was added as part of a rebase after alex's review) seems
harmless to me to apply to rustdoc at all stages, since a call to
`unwrap` is just going to `fail!` on the err case anyway.
Change `bytes!()` to return
{
static BYTES: &'static [u8] = &[...];
BYTES
}
This gives it the `'static` lifetime, whereas before it had an rvalue
lifetime. Until recently this would have prevented assigning `bytes!()`
to a static, as in
static FOO: &'static [u8] = bytes!(1,2,3);
but #14183 fixed it so blocks are now allowed in constant expressions
(with restrictions).
Fixes#11641.
Change `bytes!()` to return
{
static BYTES: &'static [u8] = &[...];
BYTES
}
This gives it the `'static` lifetime, whereas before it had an rvalue
lifetime. Until recently this would have prevented assigning `bytes!()`
to a static, as in
static FOO: &'static [u8] = bytes!(1,2,3);
but #14183 fixed it so blocks are now allowed in constant expressions
(with restrictions).
Fixes#11641.
This commit fills in the documentation holes for the FormatWriter trait which
were previously accidentally left blank. Additionally, this adds the `write_fmt`
method to the trait to allow usage of the `write!` macro with implementors of
the `FormatWriter` trait. This is not useful for consumers of the standard
library who should generally avoid the `FormatWriter` trait, but it is useful
for consumers of the core library who are not using the standard library.
This slightly adjusts the NullablePointer representation for some enums in the case where the non-nullable variant has a single field (the ptr field) to be just that, the pointer. This is in contrast to the current behaviour where we'd wrap that single pointer in a LLVM struct.
Fixes#11040 & #11303.
This commit fills in the documentation holes for the FormatWriter trait which
were previously accidentally left blank. Additionally, this adds the `write_fmt`
method to the trait to allow usage of the `write!` macro with implementors of
the `FormatWriter` trait. This is not useful for consumers of the standard
library who should generally avoid the `FormatWriter` trait, but it is useful
for consumers of the core library who are not using the standard library.
This commit is part of the libstd facade RFC, issue #13851. This creates a new
library, liballoc, which is intended to be the core allocation library for all
of Rust. It is pinned on the basic assumption that an allocation failure is an
abort or failure.
This module has inherited the heap/libc_heap modules from std::rt, the owned/rc
modules from std, and the arc module from libsync. These three pointers are
currently the three most core pointer implementations in Rust.
The UnsafeArc type in std::sync should be considered deprecated and replaced by
`Arc<Unsafe<T>>`. This commit does not currently migrate to this type, but future
commits will continue this refactoring.
This commit is part of the libstd facade RFC, issue #13851. This creates a new
library, liballoc, which is intended to be the core allocation library for all
of Rust. It is pinned on the basic assumption that an allocation failure is an
abort or failure.
This module has inherited the heap/libc_heap modules from std::rt, the owned/rc
modules from std, and the arc module from libsync. These three pointers are
currently the three most core pointer implementations in Rust.
The UnsafeArc type in std::sync should be considered deprecated and replaced by
Arc<Unsafe<T>>. This commit does not currently migrate to this type, but future
commits will continue this refactoring.
This plugs a leak where resolve was treating enums defined in parent modules as
in-scope for all children modules when resolving a pattern identifier. This
eliminates the code path in resolve entirely.
If this breaks any existing code, then it indicates that the variants need to be
explicitly imported into the module.
Closes#14221
This is an implementation of RFC 16. A module can now only be loaded if the
module declaring `mod name;` "owns" the current directory. A module is
considered as owning its directory if it meets one of the following criteria:
* It is the top-level crate file
* It is a `mod.rs` file
* It was loaded via `#[path]`
* It was loaded via `include!`
* The module was declared via an inline `mod foo { ... }` statement
For example, this directory structure is now invalid
// lib.rs
mod foo;
// foo.rs
mod bar;
// bar.rs;
fn bar() {}
With this change `foo.rs` must be renamed to `foo/mod.rs`, and `bar.rs` must be
renamed to `foo/bar.rs`. This makes it clear that `bar` is a submodule of `foo`,
and can only be accessed through `foo`.
RFC: 0016-module-file-system-hierarchy
Closes#14180
[breaking-change]
Use sync:1️⃣:Once to fetch the mach_timebase_info only once when
running precise_time_ns(). This helps because mach_timebase_info() is
surprisingly inefficient. Also fix the order of operations when applying
the timebase to the mach absolute time value.
This improves the time on my machine from
```
test tests::bench_precise_time_ns ... bench: 157 ns/iter (+/- 4)
```
to
```
test tests::bench_precise_time_ns ... bench: 38 ns/iter (+/- 3)
```
and it will get even faster once #14174 lands.
This plugs a leak where resolve was treating enums defined in parent modules as
in-scope for all children modules when resolving a pattern identifier. This
eliminates the code path in resolve entirely.
If this breaks any existing code, then it indicates that the variants need to be
explicitly imported into the module.
Closes#14221
[breaking-change]
This changes the previously naive string searching algorithm to a two-way search like glibc, which should be faster on average while still maintaining worst case linear time complexity. This fixes#14107. Note that I don't think this should be merged yet, as this is the only approach to speeding up search I've tried - it's worth considering options like Boyer-Moore or adding a bad character shift table to this. However, the benchmarks look quite good so far:
test str::bench::bench_contains_bad_naive ... bench: 290 ns/iter (+/- 12) from 1309 ns/iter (+/- 36)
test str::bench::bench_contains_equal ... bench: 479 ns/iter (+/- 10) from 137 ns/iter (+/- 2)
test str::bench::bench_contains_short_long ... bench: 2844 ns/iter (+/- 105) from 5473 ns/iter (+/- 14)
test str::bench::bench_contains_short_short ... bench: 55 ns/iter (+/- 4) from 57 ns/iter (+/- 6)
Except for the case specifically designed to be optimal for the naive case (`bench_contains_equal`), this gets as good or better performance as the previous code.
Use sync:1️⃣:Once to fetch the mach_timebase_info only once when
running precise_time_ns(). This helps because mach_timebase_info() is
surprisingly inefficient. Also fix the order of operations when applying
the timebase to the mach absolute time value.
This improves the time on my machine from
```
test tests::bench_precise_time_ns ... bench: 157 ns/iter (+/- 4)
```
to
```
test tests::bench_precise_time_ns ... bench: 38 ns/iter (+/- 3)
```
and it will get even faster once #14174 lands.