Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Add inline assembly support for m68k
I believe this should be correct, to the extent I understand the logic around inline assembly. M68k is fairly straightforward here, other than having separate address registers.
Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
In cases where it is legal, we should prefer poison values over
undef values.
This replaces undef with poison for aggregate construction and
for uninhabited types. There are more places where we can likely
use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM
versions, which are not able to handle an undef base value during
early optimization due to poison-propagation concerns.
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done
Add `round_ties_even` to `f32` and `f64`
Tracking issue: #96710
Redux of #82273. See also #55107
Adds a new method, `round_ties_even`, to `f32` and `f64`, that rounds the float to the nearest integer , rounding halfway cases to the number with an even least significant bit. Uses the `roundeven` LLVM intrinsic to do this.
Of the five IEEE 754 rounding modes, this is the only one that doesn't already have a round-to-integer function exposed by Rust (others are `round`, `floor`, `ceil`, and `trunc`). Ties-to-even is also the rounding mode used for int-to-float and float-to-float `as` casts, as well as float arithmentic operations. So not having an explicit rounding method for it seems like an oversight.
Bikeshed: this PR currently uses `round_ties_even` for the name of the method. But maybe `round_ties_to_even` is better, or `round_even`, or `round_to_even`?
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup
Remove type-traversal trait aliases
#107924 moved the type traversal (folding and visiting) traits into the type library, but created trait aliases in `rustc_middle` to minimise both the API churn for trait consumers and the arising boilerplate. As mentioned in that PR, an alternative approach of defining subtraits with blanket implementations of the respective supertraits was also considered at that time but was ruled out as not adding much value.
Unfortunately, it has since emerged that rust-analyzer has difficulty with these trait aliases at present, resulting in a degraded contributor experience (see the recent [r-a has become useless](https://rust-lang.zulipchat.com/#narrow/stream/182449-t-compiler.2Fhelp/topic/r-a.20has.20become.20useless) topic on the #t-compiler/help Zulip stream).
This PR removes the trait aliases, and accordingly the underlying type library traits are now used directly; they are parameterised by `TyCtxt<'tcx>` rather than just the `'tcx` lifetime, and imports have been updated to reflect the fact that the trait aliases' explicitly named traits are no longer automatically brought into scope. These changes also roll-back the (no-longer required) workarounds to #107747 that were made in b409329c62.
Since this PR is just a find+replace together with the changes necessary for compilation & tidy to pass, it's currently just one mega-commit. Let me know if you'd like it broken up.
r? `@oli-obk`
Extend `CodegenBackend` trait with a function returning the translation
resources from the codegen backend, which can be added to the complete
list of resources provided to the emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
...and remove it from `PointeeInfo`, which isn't meant for this.
There are still various places (marked with FIXMEs) that assume all pointers
have the same size and alignment. Fixing this requires parsing non-default
address spaces in the data layout string, which will be done in a followup.
Use struct types during codegen in less places
This makes it easier to use cg_ssa from a backend like Cranelift that doesn't have any struct types at all. After this PR struct types are still used for function arguments and return values. Removing those usages is harder but should still be doable.
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
This ensures that the error is printed even for unused variables,
as well as unifying the handling between the LLVM and GCC backends.
This also fixes unusual behavior around exported Rust-defined variables
with linkage attributes. With the previous behavior, it appears to be
impossible to define such a variable such that it can actually be imported
and used by another crate. This is because on the importing side, the
variable is required to be a pointer, but on the exporting side, the
type checker rejects static variables of pointer type because they do
not implement `Sync`. Even if it were possible to import such a type, it
appears that code generation on the importing side would add an unexpected
additional level of pointer indirection, which would break type safety.
This highlighted that the semantics of linkage on Rust-defined variables
is different to linkage on foreign items. As such, we now model the
difference with two different codegen attributes: linkage for Rust-defined
variables, and import_linkage for foreign items.
This change gives semantics to the test
src/test/ui/linkage-attr/auxiliary/def_illtyped_external.rs which was
previously expected to fail to compile. Therefore, convert it into a
test that is expected to successfully compile.
The update to the GCC backend is speculative and untested.
Prefer doc comments over `//`-comments in compiler
Doc comments are generally nicer: they show up in the documentation, they are shown in IDEs when you hover other mentions of items, etc. Thus it makes sense to use them instead of `//`-comments.