Operand: 72 -> 24 B
Statement: 192 -> 96 B
Terminator: 256 -> 112 B
librustc translation memory usage: 1795 -> 1669 MB
next step would be interning lvalues, I suppose?
This is a more principled version of the `RefCell` we were using
before. We now allocate a `Steal<Mir<'tcx>>` for each intermediate MIR
pass; when the next pass steals the entry, any later attempts to use it
will panic (there is no way to *test* if MIR is stolen, you're just
supposed to *know*).
The new setup is as follows. There is a pipeline of MIR passes that each
run **per def-id** to optimize a particular function. You are intended
to request MIR at whatever stage you need it. At the moment, there is
only one stage you can request:
- `optimized_mir(def_id)`
This yields the final product. Internally, it pulls the MIR for the
given def-id through a series of steps. Right now, these are still using
an "interned ref-cell" but they are intended to "steal" from one
another:
- `mir_build` -- performs the initial construction for local MIR
- `mir_pass_set` -- performs a suite of optimizations and transformations
- `mir_pass` -- an individual optimization within a suite
So, to construct the optimized MIR, we invoke:
mir_pass_set((MIR_OPTIMIZED, def_id))
which will build up the final MIR.
Overall goal: reduce the amount of context a mir pass needs so that it
resembles a query.
- The hooks are no longer "threaded down" to the pass, but rather run
automatically from the top-level (we also thread down the current pass
number, so that the files are sorted better).
- The hook now receives a *single* callback, rather than a callback per-MIR.
- The traits are no longer lifetime parameters, which moved to the
methods -- given that we required
`for<'tcx>` objecs, there wasn't much point to that.
- Several passes now store a `String` instead of a `&'l str` (again, no
point).
Some preparations for directly computing the ICH of crate-metadata.
This PR contains some small fixes in preparation for direct metadata hashing. It mostly just moves stuff into places where it will be needed (making the module structure slightly cleaner along the way) and it fixes some omissions in the MIR region eraser.
r? @nikomatsakis
The types of statics, like all other items, are stored in the tcx
unnormalized. This is necessarily so, because
a) Item types other than statics have generics, which can't be
normalized.
b) Eager normalization causes undesirable on-demand dependencies.
Keeping with the principle that MIR lvalues require no normalization in
order to interpret, this patch stores the normalized type of the statics
in the Lvalue and reads it to get the lvalue type.
Fixes#39367.