Rename `std:🧵:available_conccurrency` to `std:🧵:available_parallelism`
_Tracking issue: https://github.com/rust-lang/rust/issues/74479_
This PR renames `std:🧵:available_conccurrency` to `std:🧵:available_parallelism`.
## Rationale
The API was initially named `std:🧵:hardware_concurrency`, mirroring the [C++ API of the same name](https://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency). We eventually decided to omit any reference to the word "hardware" after [this comment](https://github.com/rust-lang/rust/pull/74480#issuecomment-662045841). And so we ended up with `available_concurrency` instead.
---
For a talk I was preparing this week I was reading through ["Understanding and expressing scalable concurrency" (A. Turon, 2013)](http://aturon.github.io/academic/turon-thesis.pdf), and the following passage stood out to me (emphasis mine):
> __Concurrency is a system-structuring mechanism.__ An interactive system that deals with disparate asynchronous events is naturally structured by division into concurrent threads with disparate responsibilities. Doing so creates a better fit between problem and solution, and can also decrease the average latency of the system by preventing long-running computations from obstructing quicker ones.
> __Parallelism is a resource.__ A given machine provides a certain capacity for parallelism, i.e., a bound on the number of computations it can perform simultaneously. The goal is to maximize throughput by intelligently using this resource. For interactive systems, parallelism can decrease latency as well.
_Chapter 2.1: Concurrency is not Parallelism. Page 30._
---
_"Concurrency is a system-structuring mechanism. Parallelism is a resource."_ — It feels like this accurately captures the way we should be thinking about these APIs. What this API returns is not "the amount of concurrency available to the program" which is a property of the program, and thus even with just a single thread is effectively unbounded. But instead it returns "the amount of _parallelism_ available to the program", which is a resource hard-constrained by the machine's capacity (and can be further restricted by e.g. operating systems).
That's why I'd like to propose we rename this API from `available_concurrency` to `available_parallelism`. This still meets the criteria we previously established of not attempting to define what exactly we mean by "hardware", "threads", and other such words. Instead we only talk about "concurrency" as an abstract resource available to our program.
r? `@joshtriplett`
refactor: make VecDeque's IterMut fields module-private, not just crate-private
Made the fields of VecDeque's IterMut private by creating a IterMut::new(...) function to create a new instance of IterMut and migrating usage to use IterMut::new(...).
refactor: VecDeques Drain fields to private
Made the fields of VecDeque's Drain private by creating a Drain::new(...) function to create a new instance of Drain and migrating usage to use Drain::new(...).
Expand documentation for `FpCategory`.
I intend these changes to be helpful to readers who are not yet familiar with the quirks of floating-point numbers. Additionally, I felt it was misleading to describe `Nan` as being the result of division by zero, since most divisions by zero (except for 0/0) produce `Infinite` floats, so I moved that remark to the `Infinite` variant with adjustment.
The first sentence of the `Nan` documentation is copied from `f32`; I followed the example of the `f64` documentation by referring to `f32` for general concepts, rather than duplicating the text.
----
I considered making similar changes to the documentation of the `is_*` methods of floats, but decided that that was a much larger and trickier problem; here, each of the variants' descriptions can be expected to be read in context of being mutually exclusive with the others.
Fix Lower/UpperExp formatting for integers and precision zero
Fixes the integer part of #89493 (I daren't touch the floating-point formatting code). The issue is that the "subtracted" precision essentially behaves like extra trailing zeros, but this is not currently reflected in the code properly.
for signed wrapping remainder, do not compare lhs with MIN
Since the wrapped remainder is going to be 0 for all cases when the rhs is -1, there is no need to compare the lhs with MIN.
Made the fields of VecDeque's IterMut private by creating a IterMut::new(...) function to create a new instance of IterMut and migrating usage to use IterMut::new(...).
Since the wrapped remainder is going to be 0 for all cases when the rhs is -1,
there is no need to divide in this case. Comparing the lhs with MIN is only done
for the overflow bool. In particular, this results in better code generation for
wrapping remainder, which discards the overflow bool completely.
refactor: VecDeques PairSlices fields to private
Reducing VecDeque's PairSlices fields to private, a `from(...)` method is already used to create PairSlices.
Use the 64b inner:monotonize() implementation not the 128b one for aarch64
aarch64 prior to v8.4 (FEAT_LSE2) doesn't have an instruction that guarantees
untorn 128b reads except for completing a 128b load/store exclusive pair
(ldxp/stxp) or compare-and-swap (casp) successfully. The requirement to
complete a 128b read+write atomic is actually more expensive and more unfair
than the previous implementation of monotonize() which used a Mutex on aarch64,
especially at large core counts. For aarch64 switch to the 64b atomic
implementation which is about 13x faster for a benchmark that involves many
calls to Instant::now().
Correctly handle supertraits for min_specialization
Supertraits of specialization markers could circumvent checks for
min_specialization. Elaborating predicates prevents this.
r? ````@nikomatsakis````
path.push() should work as expected on windows verbatim paths
On Windows, std::fs::canonicalize() returns an so-called UNC path. UNC paths differ with regular paths because:
- This type of path can much longer than a non-UNC path (32k vs 260 characters).
- The prefix for a UNC path is ``Component::Prefix(Prefix::DiskVerbatim(..)))``
- No `/` is allowed
- No `.` is allowed
- No `..` is allowed
Rust has poor handling of such paths. If you join a UNC path with a path with any of the above, then this will not work.
I've implemented a new method `fn join_fold()` which joins paths and also removes any `.` and `..` from it, and replaces `/` with `\` on Windows. Using this function it is possible to use UNC paths without issue. In addition, this function is useful on Linux too; paths can be appended without having to call `canonicalize()` to remove the `.` and `..`.
This PR needs test cases, which can I add. I hope this will a start of a discussion.
Stabilize `const_panic`
Closes#51999
FCP completed in #89006
```@rustbot``` label +A-const-eval +A-const-fn +T-lang
cc ```@oli-obk``` for review (not `r?`'ing as not on lang team)
Improve wording of `map_or_else` docs
Changes doc text to refer to the "default" parameter as the "default"
function.
Previously, the doc text referred to the "f" parameter as the "default" function; and the "default" parameter as the "fallback" function.
implement advance_(back_)_by on more iterators
Add more efficient, non-default implementations for `feature(iter_advance_by)` (#77404) on more iterators and adapters.
This PR only contains implementations where skipping over items doesn't elide any observable side-effects such as user-provided closures or `clone()` functions. I'll put those in a separate PR.
Add truncate note to Vec::resize
A very minor addition to the `Vec::resize` documentation to point out the `truncate` method.
When I was searching for something matching `truncate` I managed to miss it, along with some colleagues. We later found it by chance. We did find `resize` however, so I was hoping to point it out in the documentation.
Partially stabilize `array_methods`
This stabilizes `<[T; N]>::as_slice` and `<[T; N]>::as_mut_slice`, which is forms part of the `array_methods` feature: #76118.
This also makes `<[T; N]>::as_slice` const due to its trivial nature.
Manual Debug for Unix ExitCode ExitStatus ExitStatusError
These structs have misleading names. An ExitStatus[Error] is actually a Unix wait status; an ExitCode is actually an exit status. These misleading names appear in the `Debug` output.
The `Display` impls on Unix have been improved, but the `Debug` impls are still misleading, as reported in #74832.
Fix this by pretending that these internal structs are called `unix_exit_status` and `unix_wait_status` as applicable. (We can't actually rename the structs because of the way that the cross-platform machinery works: the names are cross-platform.)
After this change, this program
```
#![feature(exit_status_error)]
fn main(){
let x = std::process::Command::new("false").status().unwrap();
dbg!(x.exit_ok());
eprintln!("x={:?}",x);
}
```
produces this output
```
[src/main.rs:4] x.exit_ok() = Err(
ExitStatusError(
unix_wait_status(
256,
),
),
)
x=ExitStatus(unix_wait_status(256))
```
Closes#74832
Remove unnecessary unsafe block in `process_unix`
Because it's nested under this unsafe fn!
This block isn't detected as unnecessary because of a bug in the compiler: #88260.
Mark unsafe methods NonZero*::unchecked_(add|mul) as const.
Now that https://github.com/rust-lang/rfcs/pull/3016 has landed, these two unstable `std` function can be marked `const`, according to this detail of #84186.
const fn for option copied, take & replace
Tracking issue: [#67441](https://github.com/rust-lang/rust/issues/67441)
Adding const fn for the copied, take and replace method of Option. Also adding necessary unit test.
It's my first contribution so I am pretty sure I don't know what I'm doing but there's a first for everything!
Add `Ipv6Addr::is_benchmarking`
This PR adds the unstable method `Ipv6Addr::is_benchmarking`. This method is added for parity with `Ipv4Addr::is_benchmarking`, and I intend to use it in a future rework of `Ipv6Addr::is_global` (edit: #86634) to more accurately follow the [IANA Special Address Registry](https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml) (like is done in `Ipv4Addr::is_global`).
With `Ipv6Addr::is_benchmarking` and `Ipv4Addr::is_benchmarking` now both existing, `IpAddr::is_benchmarking` is also added.
Fix read_to_end to not grow an exact size buffer
If you know how much data to expect and use `Vec::with_capacity` to pre-allocate a buffer of that capacity, `Read::read_to_end` will still double its capacity. It needs some space to perform a read, even though that read ends up returning `0`.
It's a bummer to carefully pre-allocate 1GB to read a 1GB file into memory and end up using 2GB.
This fixes that behavior by special casing a full buffer and reading into a small "probe" buffer instead. If that read returns `0` then it's confirmed that the buffer was the perfect size. If it doesn't, the probe buffer is appended to the normal buffer and the read loop continues.
Fixing this allows several workarounds in the standard library to be removed:
- `Take` no longer needs to override `Read::read_to_end`.
- The `reservation_size` callback that allowed `Take` to inhibit the previous over-allocation behavior isn't needed.
- `fs::read` doesn't need to reserve an extra byte in `initial_buffer_size`.
Curiously, there was a unit test that specifically checked that `Read::read_to_end` *does* over-allocate. I removed that test, too.