This commit moves the `collect_and_partition_translation_items` function into a
query on `TyCtxt` instead of a free function in trans, allowing us to track
dependencies and such of the function.
This commit moves the definition of the `ExportedSymbols` structure to the
`rustc` crate and then creates a query that'll be used to construct the
`ExportedSymbols` set. This in turn uses the reachablity query exposed in the
previous commit.
This PR is an implementation of [RFC 1974] which specifies a new method of
defining a global allocator for a program. This obsoletes the old
`#![allocator]` attribute and also removes support for it.
[RFC 1974]: https://github.com/rust-lang/rfcs/pull/197
The new `#[global_allocator]` attribute solves many issues encountered with the
`#![allocator]` attribute such as composition and restrictions on the crate
graph itself. The compiler now has much more control over the ABI of the
allocator and how it's implemented, allowing much more freedom in terms of how
this feature is implemented.
cc #27389
This commit integrates the `jobserver` crate into the compiler. The crate was
previously integrated in to Cargo as part of rust-lang/cargo#4110. The purpose
here is to two-fold:
* Primarily the compiler can cooperate with Cargo on parallelism. When you run
`cargo build -j4` then this'll make sure that the entire build process between
Cargo/rustc won't use more than 4 cores, whereas today you'd get 4 rustc
instances which may all try to spawn lots of threads.
* Secondarily rustc/Cargo can now integrate with a foreign GNU `make` jobserver.
This means that if you call cargo/rustc from `make` or another
jobserver-compatible implementation it'll use foreign parallelism settings
instead of creating new ones locally.
As the number of parallel codegen instances in the compiler continues to grow
over time with the advent of incremental compilation it's expected that this'll
become more of a problem, so this is intended to nip concurrent concerns in the
bud by having all the tools to cooperate!
Note that while rustc has support for itself creating a jobserver it's far more
likely that rustc will always use the jobserver configured by Cargo. Cargo today
will now set a jobserver unconditionally for rustc to use.
This commit deletes the in-tree `getopts` crate in favor of the crates.io-based
`getopts` crate. The main difference here is with a new builder-style API, but
otherwise everything else remains relatively standard.
A long time coming this commit removes the `flate` crate in favor of the
`flate2` crate on crates.io. The functionality in `flate2` originally flowered
out of `flate` itself and is additionally the namesake for the crate. This will
leave a gap in the naming (there's not `flate` crate), which will likely cause a
particle collapse of some form somewhere.
Consequently, session creation can no longer initialize LLVM.
The few places that use the compiler without going through
rustc_driver/CompilerCalls thus need to be careful to manually
initialize LLVM (via rustc_trans!) immediately after session
creation.
This means librustc is not rebuilt when LLVM changes.
Move the code for loading metadata from rlibs and dylibs from
rustc_metadata into rustc_trans, and introduce a trait to avoid
introducing a direct dependency on rustc_trans.
This means rustc_metadata is no longer rebuilt when LLVM changes.
We've got a freshly minted beta compiler, let's update to use that on nightly!
This has a few other changes associated with it as well
* A bump to the rustc version number (to 1.19.0)
* Movement of the `cargo` and `rls` submodules to their "proper" location in
`src/tools/{cargo,rls}`. Now that Cargo workspaces support the `exclude`
option this can work.
* Updates of the `cargo` and `rls` submodules to their master branches.
* Tweak to the `src/stage0.txt` format to be more amenable for Cargo version
numbers. On the beta channel Cargo will bootstrap from a different version
than rustc (e.g. the version numbers are different), so we need different
configuration for this.
* Addition of `dev` as a readable key in the `src/stage0.txt` format. If present
then stage0 compilers are downloaded from `dev-static.rust-lang.org` instead
of `static.rust-lang.org`. This is added to accomodate our updated release
process with Travis and AppVeyor.
Handle subtyping in inference through obligations
We currently store subtyping relations in the `TypeVariables` structure as a kind of special case. This branch uses normal obligations to propagate subtyping, thus converting our inference variables into normal fallback. It also does a few other things:
- Removes the (unstable, outdated) support for custom type inference fallback.
- It's not clear how we want this to work, but we know that we don't want it to work the way it currently does.
- The existing support was also just getting in my way.
- Fixes#30225, which was caused by the trait caching code pretending type variables were normal unification variables, when indeed they were not (but now are).
There is one fishy part of these changes: when computing the LUB/GLB of a "bivariant" type parameter, I currently return the `a` value. Bivariant type parameters are only allowed in a very particular situation, where the type parameter is only used as an associated type output, like this:
```rust
pub struct Foo<A, B>
where A: Fn() -> B
{
data: A
}
```
In principle, if one had `T=Foo<A, &'a u32>` and `U=Foo<A, &'b u32>` and (e.g.) `A: for<'a> Fn() -> &'a u32`, then I think that computing the LUB of `T` and `U` might do the wrong thing. Probably the right behavior is just to create a fresh type variable. However, that particular example would not compile (because the where-clause is illegal; `'a` does not appear in any input type). I was not able to make an example that *would* compile and demonstrate this shortcoming, and handling the LUB/GLB was mildly inconvenient, so I left it as is. I am considering whether to revisit this or what.
I have started a crater run to test the impact of these changes.
Now that we've also updated cargo's release process this commit also changes the
download location of Cargo from Cargos archives back to the static.r-l.o
archives. This should ensure that the Cargo download is the exact Cargo paired
with the rustc that we release.
This commit updates the version number to 1.17.0 as we're not on that version of
the nightly compiler, and at the same time this updates src/stage0.txt to
bootstrap from freshly minted beta compiler and beta Cargo.
Remove not(stage0) from deny(warnings)
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.