Impl Default for PhantomPinned
`PhantomPinned` is just a marker type, with an obvious default value (the only value). So I can't think of a reason not to do this. Sure, it's used in exotic situations with unsafe code. But the people writing that code can decide for themselves if they can derive `Default`, and in many situations the derived impl will make sense:
```rust
#[derive(Default)]
struct NeedsPin {
marker: PhantomPinned,
buf: [u8; 1024],
ptr_to_data: Option<*const u8>,
}
```
Stabilize refcell_take
Tracking Issue: #71395
``@KodrAus`` nominated this for FCP, so here's a PR!
I've never made a stabilization PR, so please mention if there's anything I can improve, thanks.
Stabilize alloc::Layout const functions
Stabilizes #67521. In particular the following stable methods are stabilized as `const fn`:
* `size`
* `align`
* `from_size_align`
Stabilizing `size` and `align` should not be controversial as they are simple (usize and NonZeroUsize) fields and I don't think there's any reason to make them not const compatible in the future. That being true, the other methods are trivially `const`. The only other issue being returning a `Result` from a `const fn` but this has been made more usable by recent stabilizations.
Split each iterator adapter and source into individual modules
This PR creates individual modules for each iterator adapter and iterator source.
This is done to enhance the readability of corresponding modules (`adapters/mod.rs` and `sources.rs`) which were hard to navigate and read because of lots of repeated lines (e.g.: `adapters/mod.rs` was 3k lines long). This is also in line with some adapters which already had their own modules (`Flatten`, `FlatMap`, `Chain`, `Zip`, `Fuse`).
This PR also makes `Take`s adapter fields private (I have no idea why they were `pub(super)` before).
r? ``@LukasKalbertodt``
Add f{32,64}::is_subnormal
The docs recommend that you use dedicated methods instead of calling `classify` directly, although there isn't actually a way of checking if a number is subnormal without calling classify. There are dedicated methods for all other forms, excluding `is_zero` (which is just `== 0.0` anyway).
Stabilize clamp
Tracking issue: https://github.com/rust-lang/rust/issues/44095
Clamp has been merged and unstable for about a year and a half now. How do we feel about stabilizing this?
More consistently use spaces after commas in lists in docs
This PR changes instances of lists that didn't use spaces after commas, like `vec![1,2,3]`, to `vec![1, 2, 3]` to be more consistent with idiomatic Rust style (the way these were looks strange to me, especially because there are often lists that *do* use spaces after the commas later in the same code block 😬).
I noticed one of these in an example in the stdlib docs and went looking for more, but as far as I can see, I'm only changing those spots in user-facing documentation or rustc output, and the changes make no semantic difference.
Add "memset" as doc alias to slice::fill()
Similar to 53f969dfd1b5c128145c24653c668193e8c50f85 and should make it easier for people coming from C to find this function.
clarify rules for ZST Boxes
LLVM's rules around `getelementptr inbounds` with offset 0 are a bit annoying, and as a consequence we have no choice but say that a `Box<()>` pointing to previously allocated memory that has since been freed is UB. Clarify the docs to reflect this.
This is based on conversations on the LLVM mailing list.
* Here's my initial mail: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130452.html
* The first email of the March part of that thread: https://lists.llvm.org/pipermail/llvm-dev/2019-March/130831.html
* First email of the April part: https://lists.llvm.org/pipermail/llvm-dev/2019-April/131693.html
The conclusion for me at least was that `getelementptr inbounds` with offset 0 is *not* the identity function, but can sometimes return `poison` even when the input is a regular pointer -- specifically, it returns `poison` when this pointer points into something that LLVM "knows has been deallocated", i.e., a former LLVM-managed allocation. It is however the identity function on pointers obtained by casting integers.
Note that there [are formal proposals](https://people.mpi-sws.org/~jung/twinsem/twinsem.pdf) for LLVM semantics where `getelementptr inbounds` with offset 0 isn't quite the identity function but never returns `poison` (it affects the provenance of the pointer but in a way that doesn't matter if this pointer is never used for memory accesses), and indeed this is likely necessary to consistently describe LLVM semantics. But with the informal LLVM LangRef that we have right now, and with LLVM devs insisting otherwise, it seems unwise to rely on this.
Add lint for panic!("{}")
This adds a lint that warns about `panic!("{}")`.
`panic!(msg)` invocations with a single argument use their argument as panic payload literally, without using it as a format string. The same holds for `assert!(expr, msg)`.
This lints checks if `msg` is a string literal (after expansion), and warns in case it contained braces. It suggests to insert `"{}", ` to use the message literally, or to add arguments to use it as a format string.
![image](https://user-images.githubusercontent.com/783247/96643867-79eb1080-1328-11eb-8d4e-a5586837c70a.png)
This lint is also a good starting point for adding warnings about `panic!(not_a_string)` later, once [`panic_any()`](https://github.com/rust-lang/rust/pull/74622) becomes a stable alternative.
Make as{_mut,}_slice on array::IntoIter public
The functions are useful in cases where you want to move data out of the IntoIter in bulk, by transmute_copy'ing the slice and then forgetting the IntoIter.
In the compiler, this is useful for providing a sped up IntoIter implementation. One can alternatively provide a separate allocate_array function but one can avoid duplicating some logic by passing everything through the generic iterator using interface.
As per suggestion in https://github.com/rust-lang/rust/pull/78569/files#r526506964
Clarify availability of atomic operations
This was noticed while we were updating the embedded rust book: https://github.com/rust-embedded/book/pull/273/files
These targets do natively have atomic load/stores, but do not support CAS operations.
This macro is used in expression position (a match arm), and only
compiles because of #33953
Regardless of what happens with that issue, this makes the
usage of the macro less confusing at the call site.
add trailing_zeros and leading_zeros to non zero types
as a way towards being able to use the optimized intrinsics ctlz_nonzero and cttz_nonzero from stable.
have not crated any tracking issue if this is not a solution that is wanted
Rename/Deprecate LayoutErr in favor of LayoutError
Implements rust-lang/wg-allocators#73.
This patch renames LayoutErr to LayoutError, and uses a type alias to support users using the old name.
The new name will be instantly stable in release 1.49 (current nightly), the type alias will become deprecated in release 1.51 (so that when the current nightly is 1.51, 1.49 will be stable).
This is the only error type in `std` that ends in `Err` rather than `Error`, if this PR lands all stdlib error types will end in `Error` 🥰
Test structural matching for all range types
As of #70166 all range types (`core::ops::Range` etc.) can be structurally matched upon, and by extension used in const generics. In reference to the fact that this is a publicly observable property of these types, and thus falls under the Rust stability guarantees of the standard library, a regression test was added in #70283.
This regression test was implemented by me by testing for the ability to use the range types within const generics, but that is not the actual property the std guarantees now (const generics is still unstable). This PR addresses that situation by adding extra tests for the range types that directly test whether they can be structurally matched upon.
Note: also adds the otherwise unrelated test `test_range_to_inclusive` for completeness with the other range unit tests
Duration::zero() -> Duration::ZERO
In review for #72790, whether or not a constant or a function should be favored for `#![feature(duration_zero)]` was seen as an open question. In https://github.com/rust-lang/rust/issues/73544#issuecomment-691701670 an invitation was opened to either stabilize the methods or propose a switch to the constant value, supplemented with reasoning. Followup comments suggested community preference leans towards the const ZERO, which would be reason enough.
ZERO also "makes sense" beside existing associated consts for Duration. It is ever so slightly awkward to have a series of constants specifying 1 of various units but leave 0 as a method, especially when they are side-by-side in code. It seems unintuitive for the one non-dynamic value (that isn't from Default) to be not-a-const, which could hurt discoverability of the associated constants overall. Elsewhere in `std`, methods for obtaining a constant value were even deprecated, as seen with [std::u32::min_value](https://doc.rust-lang.org/std/primitive.u32.html#method.min_value).
Most importantly, ZERO costs less to use. A match supports a const pattern, but const fn can only be used if evaluated through a const context such as an inline `const { const_fn() }` or a `const NAME: T = const_fn()` declaration elsewhere. Likewise, while https://github.com/rust-lang/rust/issues/73544#issuecomment-691949373 notes `Duration::zero()` can optimize to a constant value, "can" is not "will". Only const contexts have a strong promise of such. Even without that in mind, the comment in question still leans in favor of the constant for simplicity. As it costs less for a developer to use, may cost less to optimize, and seems to have more of a community consensus for it, the associated const seems best.
r? ```@LukasKalbertodt```