Remove wrong note for short circuiting operators
They *are* representable by traits, even if the short-circuiting behaviour requires a different approach than the non-short-circuiting operators. For an example proposal, see the postponed [RFC 2722](https://github.com/rust-lang/rfcs/pull/2722). As it is not accurate, remove most of the note.
They *are* representable by traits, even if the short-circuiting
behaviour requires a different approach than the non-short-circuiting
operators. For an example proposal, see the postponed RFC 2722.
As it is not accurate, reword the note.
attempt to clarify align_to docs
This is not intended the change the docs at all, but `@workingjubilee` said the current docs are incomprehensible to some people so this is an attempt to fix that. No idea if it helps, so -- feedback welcome.
(Please let's not use this to discuss *changing* the spec. Whoever wants to change the spec should please make a separate PR for that.)
Replace usage of `ResumeTy` in async lowering with `Context`
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces the raw pointer in `ResumeTy` and the `get_context` fn that pulls the correct lifetimes out of thin air.
fixes https://github.com/rust-lang/rust/issues/104828 and https://github.com/rust-lang/rust/pull/104321#issuecomment-1336363077
r? `@oli-obk`
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces
the raw pointer in `ResumeTy` and the `get_context` fn that pulls the
correct lifetimes out of thin air.
PartialEq: PERs are homogeneous
PartialEq claims that it corresponds to a PER, but that is only a well-defined statement when `Rhs == Self`. There is no standard notion of PER on a relation between two different sets/types. So move this out of the first paragraph and clarify this.
Adjust inlining attributes around panic_immediate_abort
The goal of `panic_immediate_abort` is to permit the panic runtime and formatting code paths to be optimized away. But while poking through some disassembly of a small program compiled with that option, I found that was not the case. Enabling LTO did address that specific issue, but enabling LTO is a steep price to pay for this feature doing its job.
This PR fixes that, by tweaking two things:
* All the slice indexing functions that we `const_eval_select` on get `#[inline]`. `objdump -dC` told me that originally some `_ct` functions could end up in an executable. I won't pretend to understand what's going on there.
* Normalize attributes across all `panic!` wrappers: use `inline(never) + cold` normally, and `inline` when `panic_immediate_abort` is enabled.
But also, with LTO and `panic_immediate_abort` enabled, this patch knocks ~709 kB out of the `.text` segment of `librustc_driver.so`. That is slightly surprising to me, my best theory is that this shifts some inlining earlier in compilation, enabling some subsequent optimizations. The size improvement of `librustc_driver.so` with `panic_immediate_abort` due to this patch is greater with LTO than without LTO, which I suppose backs up this theory.
I do not know how to test this. I would quite like to, because I think what this is solving was an accidental regression. This only works with `-Zbuild-std` which is a cargo flag, and thus can't be used in a rustc codegen test.
r? `@thomcc`
---
I do not seriously think anyone is going to use a compiler built with `panic_immediate_abort`, but I wanted a big complicated Rust program to try this out on, and the compiler is such.
Add `type_ascribe!` macro as placeholder syntax for type ascription
This makes it still possible to test the internal semantics of type ascription even once the `:`-syntax is removed from the parser. The macro now gets used in a bunch of UI tests that test the semantics and not syntax of type ascription.
I might have forgotten a few tests but this should hopefully be most of them. The remaining ones will certainly be found once type ascription is removed from the parser altogether.
Part of #101728
`#![custom_mir]`: Various improvements
This PR makes a bunch of improvements to `#![custom_mir]`. Ideally this would be 4 PRs, one for each commit, but those would take forever to get merged and be a pain to juggle. Should still be reviewed one commit at a time though.
### Commit 1: Support arbitrary `let`
Before this change, all locals used in the body need to be declared at the top of the `mir!` invocation, which is rather annoying. We attempt to change that.
Unfortunately, we still have the requirement that the output of the `mir!` macro must resolve, typecheck, etc. Because of that, we can't just accept this in the THIR -> MIR parser because something like
```rust
{
let x = 0;
Goto(other)
}
other = {
RET = x;
Return()
}
```
will fail to resolve. Instead, the implementation does macro shenanigans to find the let declarations and extract them as part of the `mir!` macro. That *works*, but it is fairly complicated and degrades debuginfo by quite a bit. Specifically, the spans for any statements and declarations that are affected by this are completely wrong. My guess is that this is a net improvement though.
One way to recover some of the debuginfo would be to not support type annotations in the `let` statements, which would allow us to parse like `let $stmt:stmt`. That seems quite surprising though.
### Commit 2: Parse consts
Reuses most of the const parsing from regular Mir building for building custom mir
### Commit 3: Parse statics
Statics are slightly weird because the Mir primitive associated with them is a reference/pointer to them, so this is factored out separately.
### Commit 4: Fix some spans
A bunch of the spans were non-ideal, so we adjust them to be much more helpful.
r? `@oli-obk`
Add slice to the stack allocated string comment
Precise that the "stack allocated string" is not a string but a string slice.
``@rustbot`` label +A-docs
Stop peeling the last iteration of the loop in `Vec::resize_with`
`resize_with` uses the `ExtendWith` code that peels the last iteration:
341d8b8a2c/library/alloc/src/vec/mod.rs (L2525-L2529)
But that's kinda weird for `ExtendFunc` because it does the same thing on the last iteration anyway:
341d8b8a2c/library/alloc/src/vec/mod.rs (L2494-L2502)
So this just has it use the normal `extend`-from-`TrustedLen` code instead.
r? `@ghost`
Manually implement PartialEq for Option<T> and specialize non-nullable types
This PR manually implements `PartialEq` and `StructuralPartialEq` for `Option`, which seems to produce slightly better codegen than the automatically derived implementation.
It also allows specializing on the `core::num::NonZero*` and `core::ptr::NonNull` types, taking advantage of the niche optimization by transmuting the `Option<T>` to `T` to be compared directly, which can be done in just two instructions.
A comparison of the original, new and specialized code generation is available [here](https://godbolt.org/z/dE4jxdYsa).
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.