Both of the coverage queries can now use this one helper function to iterate
over all of the `mir::Coverage` payloads in the statements of a `mir::Body`.
Represent MIR composite debuginfo as projections instead of aggregates
Composite debuginfo for MIR is currently represented as
```
debug name => Type { projection1 => place1, projection2 => place2 };
```
ie. a single `VarDebugInfo` object with that name, and its value a `VarDebugInfoContents::Composite`.
This PR proposes to reverse the representation to be
```
debug name.projection1 => place1;
debug name.projection2 => place2;
```
ie. multiple `VarDebugInfo` objects with each their projection.
This simplifies the handling of composite debuginfo by the compiler by avoiding weird nesting.
Based on https://github.com/rust-lang/rust/pull/115139
Use relative positions inside a SourceFile.
This allows to remove the normalization of start positions for hashing, and simplify allocation of global address space.
cc `@Zoxc`
Rollup of 5 pull requests
Successful merges:
- #115353 (Emit error instead of ICE when optimized MIR is missing)
- #115488 (Take `&mut Results` in `ResultsVisitor`)
- #115492 (Allow `large_assignments` for Box/Arc/Rc initialization)
- #115519 (Don't ICE on associated type projection without feature gate in new solver)
- #115534 (Expose more information with DefId in smir)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix inlining with -Zalways-encode-mir
Only inline functions that are considered eligible for inlining
by the reachability pass.
This constraint was previously indirectly enforced by only exporting MIR
of eligible functions, but that approach doesn't work with
-Zalways-encode-mir enabled.
Only inline functions that are considered eligible for inlining
by the reachability pass.
This constraint was previously indirectly enforced by only exporting MIR
of eligible functions, but that approach doesn't work with
-Zalways-encode-mir enabled.
Don't do intra-pass validation on MIR shims
Fixes#114375
In the test that was committed, we end up generating the drop shim for `struct Foo` that looks like:
```
fn std::ptr::drop_in_place(_1: *mut Foo) -> () {
let mut _0: ();
bb0: {
goto -> bb5;
}
bb1: {
return;
}
bb2 (cleanup): {
resume;
}
bb3: {
goto -> bb1;
}
bb4 (cleanup): {
drop(((*_1).0: foo::WrapperWithDrop<()>)) -> [return: bb2, unwind terminate];
}
bb5: {
drop(((*_1).0: foo::WrapperWithDrop<()>)) -> [return: bb3, unwind: bb2];
}
}
```
In `bb4` and `bb5`, we assert that `(*_1).0` has type `WrapperWithDrop<()>`. However, In a user-facing param env, the type is actually `WrapperWithDrop<Tait>`. These types are not equal in a user-facing param-env (and can't be made equal even if we use `DefiningAnchor::Bubble`, since it's a non-local TAIT).
coverage: Give the instrumentor its own counter type, separate from MIR
Within the MIR representation of coverage data, `CoverageKind` is an important part of `StatementKind::Coverage`, but the `InstrumentCoverage` pass also uses it heavily as an internal data structure. This means that any change to `CoverageKind` also needs to update all of the internal parts of `InstrumentCoverage` that manipulate it directly, making the MIR representation difficult to modify.
---
This change fixes that by giving the instrumentor its own `BcbCounter` type for internal use, which is then converted to a `CoverageKind` when injecting coverage information into MIR.
The main change is mostly mechanical, because the initial `BcbCounter` is drop-in compatible with `CoverageKind`, minus the unnecessary `CoverageKind::Unreachable` variant.
I've then removed the `function_source_hash` field from `BcbCounter::Counter`, as a small example of how the two types can now usefully differ from each other. Every counter in a MIR-level function should have the same source hash, so we can supply the hash during the conversion to `CoverageKind::Counter` instead.
---
*Background:* BCB stands for “basic coverage block”, which is a node in the simplified control-flow graph used by coverage instrumentation. The instrumentor pass uses the function's actual MIR control-flow graph to build a simplified BCB graph, then assigns coverage counters and counter expressions to various nodes/edges in that simplified graph, and then finally injects corresponding coverage information into the underlying MIR.
Add MIR validation for unwind out from nounwind functions + fixes to make validation pass
`@Nilstrieb` This is the MIR validation you asked in https://github.com/rust-lang/rust/pull/112403#discussion_r1222739722.
Two passes need to be fixed to get the validation to pass:
* `RemoveNoopLandingPads` currently unconditionally introduce a resume block (even there is none to begin with!), changed to not do that
* Generator state transform introduces a `assert` which may unwind, and its drop elaboration also introduces many new `UnwindAction`s, so in this case run the AbortUnwindingCalls after the transformation.
I believe this PR should also fixRust-for-Linux/linux#1016, cc `@ojeda`
r? `@Nilstrieb`
This shows one small benefit of separating `BcbCounter` from `CoverageKind`.
The function source hash will be the same for all counters within a function,
so instead of passing it through `CoverageCounters` and storing it in every
counter, we can just supply it during the final conversion to `CoverageKind`.
Otherwise the file name generated for generator_drop will become
core.ptr-drop_in_place.[generator@<FILEPATH>_<NUMBERS>].generator_drop.0.mir
instead of main-{closure#0}.generator_drop.0.mir which breaks a mir-opt
test.
Normalize before checking if local is freeze in `deduced_param_attrs`
Not normalizing the local type eagerly results in possibly exponential amounts of normalization happening downstream in `is_freeze_raw`.
Fixes#113372
Storing coverage counter information in `CoverageCounters` has a few advantages
over storing it directly inside BCB graph nodes:
- The graph doesn't need to be mutable when making the counters, making it
easier to see that the graph itself is not modified during this step.
- All of the counter data is clearly visible in one place.
- It becomes possible to use a representation that doesn't correspond 1:1 to
graph nodes, e.g. storing all the edge counters in a single hashmap instead of
several.