Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Support -Z unpretty=thir-tree again
Currently `-Z unpretty=thir-tree` is broken after some THIR refactorings. This re-implements it, making it easier to debug THIR-related issues.
We have to do analyzes before getting the THIR, since trying to create THIR from invalid HIR can ICE. But doing those analyzes requires the THIR to be built and stolen. We work around this by creating a separate query to construct the THIR tree string representation.
Closes https://github.com/rust-lang/project-thir-unsafeck/issues/8, fixes#85552.
Combine two loops in `check_match`
Suggested by Nadrieril in
https://github.com/rust-lang/rust/pull/79051#discussion_r548778186.
Opening to get a perf run. Hopefully this code doesn't require everything in the
first loop to be done before running the second! (It shouldn't though.)
cc `@Nadrieril`
CTFE/Miri engine Pointer type overhaul
This fixes the long-standing problem that we are using `Scalar` as a type to represent pointers that might be integer values (since they point to a ZST). The main problem is that with int-to-ptr casts, there are multiple ways to represent the same pointer as a `Scalar` and it is unclear if "normalization" (i.e., the cast) already happened or not. This leads to ugly methods like `force_mplace_ptr` and `force_op_ptr`.
Another problem this solves is that in Miri, it would make a lot more sense to have the `Pointer::offset` field represent the full absolute address (instead of being relative to the `AllocId`). This means we can do ptr-to-int casts without access to any machine state, and it means that the overflow checks on pointer arithmetic are (finally!) accurate.
To solve this, the `Pointer` type is made entirely parametric over the provenance, so that we can use `Pointer<AllocId>` inside `Scalar` but use `Pointer<Option<AllocId>>` when accessing memory (where `None` represents the case that we could not figure out an `AllocId`; in that case the `offset` is an absolute address). Moreover, the `Provenance` trait determines if a pointer with a given provenance can be cast to an integer by simply dropping the provenance.
I hope this can be read commit-by-commit, but the first commit does the bulk of the work. It introduces some FIXMEs that are resolved later.
Fixes https://github.com/rust-lang/miri/issues/841
Miri PR: https://github.com/rust-lang/miri/pull/1851
r? `@oli-obk`
Update Rust Float-Parsing Algorithms to use the Eisel-Lemire algorithm.
# Summary
Rust, although it implements a correct float parser, has major performance issues in float parsing. Even for common floats, the performance can be 3-10x [slower](https://arxiv.org/pdf/2101.11408.pdf) than external libraries such as [lexical](https://github.com/Alexhuszagh/rust-lexical) and [fast-float-rust](https://github.com/aldanor/fast-float-rust).
Recently, major advances in float-parsing algorithms have been developed by Daniel Lemire, along with others, and implement a fast, performant, and correct float parser, with speeds up to 1200 MiB/s on Apple's M1 architecture for the [canada](0e2b5d163d/data/canada.txt) dataset, 10x faster than Rust's 130 MiB/s.
In addition, [edge-cases](https://github.com/rust-lang/rust/issues/85234) in Rust's [dec2flt](868c702d0c/library/core/src/num/dec2flt) algorithm can lead to over a 1600x slowdown relative to efficient algorithms. This is due to the use of Clinger's correct, but slow [AlgorithmM and Bellepheron](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf), which have been improved by faster big-integer algorithms and the Eisel-Lemire algorithm, respectively.
Finally, this algorithm provides substantial improvements in the number of floats the Rust core library can parse. Denormal floats with a large number of digits cannot be parsed, due to use of the `Big32x40`, which simply does not have enough digits to round a float correctly. Using a custom decimal class, with much simpler logic, we can parse all valid decimal strings of any digit count.
```rust
// Issue in Rust's dec2fly.
"2.47032822920623272088284396434110686182e-324".parse::<f64>(); // Err(ParseFloatError { kind: Invalid })
```
# Solution
This pull request implements the Eisel-Lemire algorithm, modified from [fast-float-rust](https://github.com/aldanor/fast-float-rust) (which is licensed under Apache 2.0/MIT), along with numerous modifications to make it more amenable to inclusion in the Rust core library. The following describes both features in fast-float-rust and improvements in fast-float-rust for inclusion in core.
**Documentation**
Extensive documentation has been added to ensure the code base may be maintained by others, which explains the algorithms as well as various associated constants and routines. For example, two seemingly magical constants include documentation to describe how they were derived as follows:
```rust
// Round-to-even only happens for negative values of q
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
```
This ensures maintainability of the code base.
**Improvements for Disguised Fast-Path Cases**
The fast path in float parsing algorithms attempts to use native, machine floats to represent both the significant digits and the exponent, which is only possible if both can be exactly represented without rounding. In practice, this means that the significant digits must be 53-bits or less and the then exponent must be in the range `[-22, 22]` (for an f64). This is similar to the existing dec2flt implementation.
However, disguised fast-path cases exist, where there are few significant digits and an exponent above the valid range, such as `1.23e25`. In this case, powers-of-10 may be shifted from the exponent to the significant digits, discussed at length in https://github.com/rust-lang/rust/issues/85198.
**Digit Parsing Improvements**
Typically, integers are parsed from string 1-at-a-time, requiring unnecessary multiplications which can slow down parsing. An approach to parse 8 digits at a time using only 3 multiplications is described in length [here](https://johnnylee-sde.github.io/Fast-numeric-string-to-int/). This leads to significant performance improvements, and is implemented for both big and little-endian systems.
**Unsafe Changes**
Relative to fast-float-rust, this library makes less use of unsafe functionality and clearly documents it. This includes the refactoring and documentation of numerous unsafe methods undesirably marked as safe. The original code would look something like this, which is deceptively marked as safe for unsafe functionality.
```rust
impl AsciiStr {
#[inline]
pub fn step_by(&mut self, n: usize) -> &mut Self {
unsafe { self.ptr = self.ptr.add(n) };
self
}
}
...
#[inline]
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
// the first character is 'e'/'E' and scientific mode is enabled
let start = *s;
s.step();
...
}
```
The new code clearly documents safety concerns, and does not mark unsafe functionality as safe, leading to better safety guarantees.
```rust
impl AsciiStr {
/// Advance the view by n, advancing it in-place to (n..).
pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
// SAFETY: same as step_by, safe as long n is less than the buffer length
self.ptr = unsafe { self.ptr.add(n) };
self
}
}
...
/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
let start = *s;
// SAFETY: the first character is 'e'/'E' and scientific mode is enabled
unsafe {
s.step();
}
...
}
```
This allows us to trivially demonstrate the new implementation of dec2flt is safe.
**Inline Annotations Have Been Removed**
In the previous implementation of dec2flt, inline annotations exist practically nowhere in the entire module. Therefore, these annotations have been removed, which mostly does not impact [performance](https://github.com/aldanor/fast-float-rust/issues/15#issuecomment-864485157).
**Fixed Correctness Tests**
Numerous compile errors in `src/etc/test-float-parse` were present, due to deprecation of `time.clock()`, as well as the crate dependencies with `rand`. The tests have therefore been reworked as a [crate](https://github.com/Alexhuszagh/rust/tree/master/src/etc/test-float-parse), and any errors in `runtests.py` have been patched.
**Undefined Behavior**
An implementation of `check_len` which relied on undefined behavior (in fast-float-rust) has been refactored, to ensure that the behavior is well-defined. The original code is as follows:
```rust
#[inline]
pub fn check_len(&self, n: usize) -> bool {
unsafe { self.ptr.add(n) <= self.end }
}
```
And the new implementation is as follows:
```rust
/// Check if the slice at least `n` length.
fn check_len(&self, n: usize) -> bool {
n <= self.as_ref().len()
}
```
Note that this has since been fixed in [fast-float-rust](https://github.com/aldanor/fast-float-rust/pull/29).
**Inferring Binary Exponents**
Rather than explicitly store binary exponents, this new implementation infers them from the decimal exponent, reducing the amount of static storage required. This removes the requirement to store [611 i16s](868c702d0c/library/core/src/num/dec2flt/table.rs (L8)).
# Code Size
The code size, for all optimizations, does not considerably change relative to before for stripped builds, however it is **significantly** smaller prior to stripping the resulting binaries. These binary sizes were calculated on x86_64-unknown-linux-gnu.
**new**
Using rustc version 1.55.0-dev.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|400k|300K
1|396k|292K
2|392k|292K
3|392k|296K
s|396k|292K
z|396k|292K
**old**
Using rustc version 1.53.0-nightly.
opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|3.2M|304K
1|3.2M|292K
2|3.1M|284K
3|3.1M|284K
s|3.1M|284K
z|3.1M|284K
# Correctness
The dec2flt implementation passes all of Rust's unittests and comprehensive float parsing tests, along with numerous other tests such as Nigel Toa's comprehensive float [tests](https://github.com/nigeltao/parse-number-fxx-test-data) and Hrvoje Abraham [strtod_tests](https://github.com/ahrvoje/numerics/blob/master/strtod/strtod_tests.toml). Therefore, it is unlikely that this algorithm will incorrectly round parsed floats.
# Issues Addressed
This will fix and close the following issues:
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Implementation is based off fast-float-rust, with a few notable changes.
- Some unsafe methods have been removed.
- Safe methods with inherently unsafe functionality have been removed.
- All unsafe functionality is documented and provably safe.
- Extensive documentation has been added for simpler maintenance.
- Inline annotations on internal routines has been removed.
- Fixed Python errors in src/etc/test-float-parse/runtests.py.
- Updated test-float-parse to be a library, to avoid missing rand dependency.
- Added regression tests for #31109 and #31407 in core tests.
- Added regression tests for #31109 and #31407 in ui tests.
- Use the existing slice primitive to simplify shared dec2flt methods
- Remove Miri ignores from dec2flt, due to faster parsing times.
- resolves#85198
- resolves#85214
- resolves#85234
- fixes#31407
- fixes#31109
- fixes#53015
- resolves#68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
Implement Mutation- and BorrowOfLayoutConstrainedField in thir-unsafeck
Since nobody has so far claimed Mutation- and BorrowOfLayoutConstrainedField in rust-lang/project-thir-unsafeck#7, I have taken the liberty of implementing them in thir-unsafeck.
r? `@LeSeulArtichaut`
Check whether the closure's owner is an ADT in thir-unsafeck
This pull request fixes#85871. The code in `rustc_mir_build/src/check_unsafety.rs` incorrectly assumes that a closure's owner always has a body, but only functions, closures, and constants have bodies, whereas a closure can also appear inside a struct or enum:
```rust
struct S {
arr: [(); match || 1 { _ => 42 }]
}
enum E {
A([(); { || 1; 42 }])
}
```
This pull request fixes the resulting ICE by checking whether the closure's owner is an ADT and only deferring to `thir_check_unsafety(owner)` if it isn't.
Fix `unused_unsafe` around `await`
Enables `unused_unsafe` lint for `unsafe { future.await }`.
The existing test for this is `unsafe { println!() }`, so I assume that `println!` used to contain compiler-generated unsafe but this is no longer true, and so the existing test is broken. I replaced the test with `unsafe { ...await }`. I believe `await` is currently the only instance of compiler-generated unsafe.
Reverts some parts of #85421, but the issue predates that PR.
Add pattern walking support to THIR walker
Suggested in https://github.com/rust-lang/rust/pull/85263#issuecomment-861906730, this splits off the support for pattern walking in THIR from #85263. This has no observable effect on THIR unsafety checking, since it is not currently possible to trigger unsafety from the THIR checker using the additional patterns or constants that are now walked. THIR patterns are walked in source code order.
r? `@LeSeulArtichaut`
Remove some last remants of {push,pop}_unsafe!
These macros have already been removed, but there was still some code handling these macros. That code is now removed.
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
rustc: Allow safe #[target_feature] on wasm
This commit updates the compiler's handling of the `#[target_feature]`
attribute when applied to functions on WebAssembly-based targets. The
compiler in general requires that any functions with `#[target_feature]`
are marked as `unsafe` as well, but this commit relaxes the restriction
for WebAssembly targets where the attribute can be applied to safe
functions as well.
The reason this is done is that the motivation for this feature of the
compiler is not applicable for WebAssembly targets. In general the
`#[target_feature]` attribute is used to enhance target CPU features
enabled beyond the basic level for the rest of the compilation. If done
improperly this means that your program could execute an instruction
that the CPU you happen to be running on does not understand. This is
considered undefined behavior where it is unknown what will happen (e.g.
it's not a deterministic `SIGILL`).
For WebAssembly, however, the target is different. It is not possible
for a running WebAssembly program to execute an instruction that the
engine does not understand. If this were the case then the program would
not have validated in the first place and would not run at all. Even if
this were allowed in some hypothetical future where engines have some
form of runtime feature detection (which they do not right now) any
implementation of such a feature would generate a trap if a module
attempts to execute an instruction the module does not understand. This
deterministic trap behavior would still not fall into the category of
undefined behavior because the trap is deterministic.
For these reasons the `#[target_feature]` attribute is now allowed on
safe functions, but only for WebAssembly targets. This notably enables
the wasm-SIMD intrinsics proposed for stabilization in #74372 to be
marked as safe generally instead of today where they're all `unsafe` due
to the historical implementation of `#[target_feature]` in the compiler.
Make `Step` trait safe to implement
This PR makes a few modifications to the `Step` trait that I believe better position it for stabilization in the short term. In particular,
1. `unsafe trait TrustedStep` is introduced, indicating that the implementation of `Step` for a given type upholds all stated invariants (which have remained unchanged). This is gated behind a new `trusted_step` feature, as stabilization is realistically blocked on min_specialization.
2. The `Step` trait is internally specialized on the `TrustedStep` trait, which avoids a serious performance regression.
3. `TrustedLen` is implemented for `T: TrustedStep` as the latter's invariants subsume the former's.
4. The `Step` trait is no longer `unsafe`, as the invariants must not be relied upon by unsafe code (unless the type implements `TrustedStep`).
5. `TrustedStep` is implemented for all types that implement `Step` in the standard library and compiler.
6. The `step_trait_ext` feature is merged into the `step_trait` feature. I was unable to find any reasoning for the features being split; the `_unchecked` methods need not necessarily be stabilized at the same time, but I think it is useful to have them under the same feature flag.
All existing implementations of `Step` will be broken, as it is not possible to `unsafe impl` a safe trait. Given this trait only exists on nightly, I feel this breakage is acceptable. The blanket `impl<T: Step> TrustedLen for T` will likely cause some minor breakage, but this should be covered by the equivalent impl for `TrustedStep`.
Hopefully these changes are sufficient to place `Step` in decent position for stabilization, which would allow user-defined types to be used with `a..b` syntax.
This commit updates the compiler's handling of the `#[target_feature]`
attribute when applied to functions on WebAssembly-based targets. The
compiler in general requires that any functions with `#[target_feature]`
are marked as `unsafe` as well, but this commit relaxes the restriction
for WebAssembly targets where the attribute can be applied to safe
functions as well.
The reason this is done is that the motivation for this feature of the
compiler is not applicable for WebAssembly targets. In general the
`#[target_feature]` attribute is used to enhance target CPU features
enabled beyond the basic level for the rest of the compilation. If done
improperly this means that your program could execute an instruction
that the CPU you happen to be running on does not understand. This is
considered undefined behavior where it is unknown what will happen (e.g.
it's not a deterministic `SIGILL`).
For WebAssembly, however, the target is different. It is not possible
for a running WebAssembly program to execute an instruction that the
engine does not understand. If this were the case then the program would
not have validated in the first place and would not run at all. Even if
this were allowed in some hypothetical future where engines have some
form of runtime feature detection (which they do not right now) any
implementation of such a feature would generate a trap if a module
attempts to execute an instruction the module does not understand. This
deterministic trap behavior would still not fall into the category of
undefined behavior because the trap is deterministic.
For these reasons the `#[target_feature]` attribute is now allowed on
safe functions, but only for WebAssembly targets. This notably enables
the wasm-SIMD intrinsics proposed for stabilization in #74372 to be
marked as safe generally instead of today where they're all `unsafe` due
to the historical implementation of `#[target_feature]` in the compiler.
readd capture disjoint fields gate
This readds a feature gate guard that was added in PR #83521. (Basically, there were unintended consequences to the code exposed by removing the feature gate guard.)
The root bug still remains to be resolved, as discussed in issue #85561. This is just a band-aid suitable for a beta backport.
Cc issue #85435
Note that the latter issue is unfixed until we backport this (or another fix) to 1.53 beta