This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
All deprecation warnings have been converted to errors. This includes
the warning for multiple cfgs on one item. We'll leave that as an error
for some period of time to ensure that all uses are updated before the
behavior changes from "or" to "and".
If you define lang items in your crate, add `#[feature(lang_items)]`.
If you define intrinsics (`extern "rust-intrinsic"`), add
`#[feature(intrinsics)]`.
Closes#12858.
[breaking-change]
This commit moves reflection (as well as the {:?} format modifier) to a new
libdebug crate, all of which is marked experimental.
This is a breaking change because it now requires the debug crate to be
explicitly linked if the :? format qualifier is used. This means that any code
using this feature will have to add `extern crate debug;` to the top of the
crate. Any code relying on reflection will also need to do this.
Closes#12019
[breaking-change]
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit fixes all of the fallout of the previous commit which is an attempt
to refine privacy. There were a few unfortunate leaks which now must be plugged,
and the most horrible one is the current `shouldnt_be_public` module now inside
`std::rt`. I think that this either needs a slight reorganization of the
runtime, or otherwise it needs to just wait for the external users of these
modules to get replaced with their `rt` implementations.
Other fixes involve making things pub which should be pub, and otherwise
updating error messages that now reference privacy instead of referencing an
"unresolved name" (yay!).
I believe this patch incorporates all expected syntax changes from extern
function reform (#3678). You can now write things like:
extern "<abi>" fn foo(s: S) -> T { ... }
extern "<abi>" mod { ... }
extern "<abi>" fn(S) -> T
The ABI for foreign functions is taken from this syntax (rather than from an
annotation). We support the full ABI specification I described on the mailing
list. The correct ABI is chosen based on the target architecture.
Calls by pointer to C functions are not yet supported, and the Rust type of
crust fns is still *u8.