type they provide an implementation for.
This breaks code like:
mod foo {
struct Foo { ... }
}
impl foo::Foo {
...
}
Change this code to:
mod foo {
struct Foo { ... }
impl Foo {
...
}
}
Additionally, if you used the I/O path extension methods `stat`,
`lstat`, `exists`, `is_file`, or `is_dir`, note that these methods have
been moved to the the `std::io::fs::PathExtensions` trait. This breaks
code like:
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Change this code to:
use std::io::fs::PathExtensions;
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Closes#17059.
RFC #155.
[breaking-change]
Replace its usage with byte string literals, except in `bytes!()` tests.
Also add a new snapshot, to be able to use the new b"foo" syntax.
The src/etc/2014-06-rewrite-bytes-macros.py script automatically
rewrites `bytes!()` invocations into byte string literals.
Pass it filenames as arguments to generate a diff that you can inspect,
or `--apply` followed by filenames to apply the changes in place.
Diffs can be piped into `tip` or `pygmentize -l diff` for coloring.
See #13983 and #14000.
Fix was originally authored by alexcrichton and then rebased a couple
times by pnkfelix, most recently atop PR 13954.
----
Regarding the change to librustdoc/lib.rs, to do `map_err` before
unwrapping a `TqskResult`: I do not understand how master is passing
without this change or something like it, since `Box<Any:Send>` does
not implement `Show`. (Is this something that is only a problem for
the snapshot stage0 compiler?) Still, the change I have put in here
(which was added as part of a rebase after alex's review) seems
harmless to me to apply to rustdoc at all stages, since a call to
`unwrap` is just going to `fail!` on the err case anyway.
When a syntax extension is loaded by the compiler, the dylib that is opened may
have other dylibs that it depends on. The dynamic linker must be able to find
these libraries on the system or else the library will fail to load.
Currently, unix gets by with the use of rpaths. This relies on the dylib not
moving around too drastically relative to its dependencies. For windows,
however, this is no rpath available, and in theory unix should work without
rpaths as well.
This modifies the compiler to add all -L search directories to the dynamic
linker's set of load paths. This is currently managed through environment
variables for each platform.
Closes#13848
This allows the use of syntax extensions when cross-compiling (fixing #12102). It does this by encoding the target triple in the crate metadata and checking it when searching for files. Currently the crate triple must match the host triple when there is a macro_registrar_fn, it must match the target triple when linking, and can match either when only macro_rules! macros are used.
due to carelessness, this is pretty much a duplicate of https://github.com/mozilla/rust/pull/13450.
This adds the target triple to the crate metadata.
When searching for a crate the phase (link, syntax) is taken into account.
During link phase only crates matching the target triple are considered.
During syntax phase, either the target or host triple will be accepted, unless
the crate defines a macro_registrar, in which case only the host triple will
match.
When calculating the sysroot, it's more accurate to use realpath() rather than
just one readlink() to account for any intermediate symlinks that the rustc
binary resolves itself to.
For rpath, realpath() is necessary because the rpath must dictate a relative
rpath from the destination back to the originally linked library, which works
more robustly if there are no symlinks involved.
Concretely, any binary generated on OSX into $TMPDIR requires an absolute rpath
because the temporary directory is behind a symlink with one layer of
indirection. This symlink causes all relative rpaths to fail to resolve.
cc #11734
cc #11857
This is not sufficient for finding the library directory for binary
installs, but it does make the build more complex by requiring
env vars be set to build rustc.
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
Added allow(non_camel_case_types) to librustc where necesary
Tried to fix problems with non_camel_case_types outside rustc
fixed failing tests
Docs updated
Moved #[allow(non_camel_case_types)] a level higher.
markdown.rs reverted
Fixed timer that was failing tests
Fixed another timer
Before this commit, rustc looked in `dirname $0`/../lib for libraries
but that doesn't work when rustc is invoked through a symlink.
This commit makes rustc look in `dirname $(readlink $0)`/../lib, i.e.
it first canonicalizes the symlink before walking up the directory tree.
Fixes#3632.
We were previously reading metadata via `ar p`, but as learned from rustdoc
awhile back, spawning a process to do something is pretty slow. Turns out LLVM
has an Archive class to read archives, but it cannot write archives.
This commits adds bindings to the read-only version of the LLVM archive class
(with a new type that only has a read() method), and then it uses this class
when reading the metadata out of rlibs. When you put this in tandem of not
compressing the metadata, reading the metadata is 4x faster than it used to be
The timings I got for reading metadata from the respective libraries was:
libstd-04ff901e-0.9-pre.dylib => 100ms
libstd-04ff901e-0.9-pre.rlib => 23ms
librustuv-7945354c-0.9-pre.dylib => 4ms
librustuv-7945354c-0.9-pre.rlib => 1ms
librustc-5b94a16f-0.9-pre.dylib => 87ms
librustc-5b94a16f-0.9-pre.rlib => 35ms
libextra-a6ebb16f-0.9-pre.dylib => 63ms
libextra-a6ebb16f-0.9-pre.rlib => 15ms
libsyntax-2e4c0458-0.9-pre.dylib => 86ms
libsyntax-2e4c0458-0.9-pre.rlib => 22ms
In order to always take advantage of these faster metadata read-times, I sort
the files in filesearch based on whether they have an rlib extension or not
(prefer all rlib files first).
Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to
0.095s on my system (when preferring dynamic linking). Reading metadata is still
the slowest pass of the compiler at 0.035s, but it's getting pretty close to
linking at 0.021s! The next best optimization is to just not copy the metadata
from LLVM because that's the most expensive part of reading metadata right now.
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs