Implement new asm! syntax from RFC 2850
This PR implements the new `asm!` syntax proposed in https://github.com/rust-lang/rfcs/pull/2850.
# Design
A large part of this PR revolves around taking an `asm!` macro invocation and plumbing it through all of the compiler layers down to LLVM codegen. Throughout the various stages, an `InlineAsm` generally consists of 3 components:
- The template string, which is stored as an array of `InlineAsmTemplatePiece`. Each piece represents either a literal or a placeholder for an operand (just like format strings).
```rust
pub enum InlineAsmTemplatePiece {
String(String),
Placeholder { operand_idx: usize, modifier: Option<char>, span: Span },
}
```
- The list of operands to the `asm!` (`in`, `[late]out`, `in[late]out`, `sym`, `const`). These are represented differently at each stage of lowering, but follow a common pattern:
- `in`, `out` and `inout` all have an associated register class (`reg`) or explicit register (`"eax"`).
- `inout` has 2 forms: one with a single expression that is both read from and written to, and one with two separate expressions for the input and output parts.
- `out` and `inout` have a `late` flag (`lateout` / `inlateout`) to indicate that the register allocator is allowed to reuse an input register for this output.
- `out` and the split variant of `inout` allow `_` to be specified for an output, which means that the output is discarded. This is used to allocate scratch registers for assembly code.
- `sym` is a bit special since it only accepts a path expression, which must point to a `static` or a `fn`.
- The options set at the end of the `asm!` macro. The only one that is particularly of interest to rustc is `NORETURN` which makes `asm!` return `!` instead of `()`.
```rust
bitflags::bitflags! {
pub struct InlineAsmOptions: u8 {
const PURE = 1 << 0;
const NOMEM = 1 << 1;
const READONLY = 1 << 2;
const PRESERVES_FLAGS = 1 << 3;
const NORETURN = 1 << 4;
const NOSTACK = 1 << 5;
}
}
```
## AST
`InlineAsm` is represented as an expression in the AST:
```rust
pub struct InlineAsm {
pub template: Vec<InlineAsmTemplatePiece>,
pub operands: Vec<(InlineAsmOperand, Span)>,
pub options: InlineAsmOptions,
}
pub enum InlineAsmRegOrRegClass {
Reg(Symbol),
RegClass(Symbol),
}
pub enum InlineAsmOperand {
In {
reg: InlineAsmRegOrRegClass,
expr: P<Expr>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<P<Expr>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: P<Expr>,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: P<Expr>,
out_expr: Option<P<Expr>>,
},
Const {
expr: P<Expr>,
},
Sym {
expr: P<Expr>,
},
}
```
The `asm!` macro is implemented in librustc_builtin_macros and outputs an `InlineAsm` AST node. The template string is parsed using libfmt_macros, positional and named operands are resolved to explicit operand indicies. Since target information is not available to macro invocations, validation of the registers and register classes is deferred to AST lowering.
## HIR
`InlineAsm` is represented as an expression in the HIR:
```rust
pub struct InlineAsm<'hir> {
pub template: &'hir [InlineAsmTemplatePiece],
pub operands: &'hir [InlineAsmOperand<'hir>],
pub options: InlineAsmOptions,
}
pub enum InlineAsmRegOrRegClass {
Reg(InlineAsmReg),
RegClass(InlineAsmRegClass),
}
pub enum InlineAsmOperand<'hir> {
In {
reg: InlineAsmRegOrRegClass,
expr: Expr<'hir>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<Expr<'hir>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Expr<'hir>,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: Expr<'hir>,
out_expr: Option<Expr<'hir>>,
},
Const {
expr: Expr<'hir>,
},
Sym {
expr: Expr<'hir>,
},
}
```
AST lowering is where `InlineAsmRegOrRegClass` is converted from `Symbol`s to an actual register or register class. If any modifiers are specified for a template string placeholder, these are validated against the set allowed for that operand type. Finally, explicit registers for inputs and outputs are checked for conflicts (same register used for different operands).
## Type checking
Each register class has a whitelist of types that it may be used with. After the types of all operands have been determined, the `intrinsicck` pass will check that these types are in the whitelist. It also checks that split `inout` operands have compatible types and that `const` operands are integers or floats. Suggestions are emitted where needed if a template modifier should be used for an operand based on the type that was passed into it.
## HAIR
`InlineAsm` is represented as an expression in the HAIR:
```rust
crate enum ExprKind<'tcx> {
// [..]
InlineAsm {
template: &'tcx [InlineAsmTemplatePiece],
operands: Vec<InlineAsmOperand<'tcx>>,
options: InlineAsmOptions,
},
}
crate enum InlineAsmOperand<'tcx> {
In {
reg: InlineAsmRegOrRegClass,
expr: ExprRef<'tcx>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<ExprRef<'tcx>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: ExprRef<'tcx>,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: ExprRef<'tcx>,
out_expr: Option<ExprRef<'tcx>>,
},
Const {
expr: ExprRef<'tcx>,
},
SymFn {
expr: ExprRef<'tcx>,
},
SymStatic {
expr: ExprRef<'tcx>,
},
}
```
The only significant change compared to HIR is that `Sym` has been lowered to either a `SymFn` whose `expr` is a `Literal` ZST of the `fn`, or a `SymStatic` whose `expr` is a `StaticRef`.
## MIR
`InlineAsm` is represented as a `Terminator` in the MIR:
```rust
pub enum TerminatorKind<'tcx> {
// [..]
/// Block ends with an inline assembly block. This is a terminator since
/// inline assembly is allowed to diverge.
InlineAsm {
/// The template for the inline assembly, with placeholders.
template: &'tcx [InlineAsmTemplatePiece],
/// The operands for the inline assembly, as `Operand`s or `Place`s.
operands: Vec<InlineAsmOperand<'tcx>>,
/// Miscellaneous options for the inline assembly.
options: InlineAsmOptions,
/// Destination block after the inline assembly returns, unless it is
/// diverging (InlineAsmOptions::NORETURN).
destination: Option<BasicBlock>,
},
}
pub enum InlineAsmOperand<'tcx> {
In {
reg: InlineAsmRegOrRegClass,
value: Operand<'tcx>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
place: Option<Place<'tcx>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_value: Operand<'tcx>,
out_place: Option<Place<'tcx>>,
},
Const {
value: Operand<'tcx>,
},
SymFn {
value: Box<Constant<'tcx>>,
},
SymStatic {
value: Box<Constant<'tcx>>,
},
}
```
As part of HAIR lowering, `InOut` and `SplitInOut` operands are lowered to a split form with a separate `in_value` and `out_place`.
Semantically, the `InlineAsm` terminator is similar to the `Call` terminator except that it has multiple output places where a `Call` only has a single return place output.
The constant promotion pass is used to ensure that `const` operands are actually constants (using the same logic as `#[rustc_args_required_const]`).
## Codegen
Operands are lowered one more time before being passed to LLVM codegen:
```rust
pub enum InlineAsmOperandRef<'tcx, B: BackendTypes + ?Sized> {
In {
reg: InlineAsmRegOrRegClass,
value: OperandRef<'tcx, B::Value>,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
place: Option<PlaceRef<'tcx, B::Value>>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_value: OperandRef<'tcx, B::Value>,
out_place: Option<PlaceRef<'tcx, B::Value>>,
},
Const {
string: String,
},
SymFn {
instance: Instance<'tcx>,
},
SymStatic {
def_id: DefId,
},
}
```
The operands are lowered to LLVM operands and constraint codes as follow:
- `out` and the output part of `inout` operands are added first, as required by LLVM. Late output operands have a `=` prefix added to their constraint code, non-late output operands have a `=&` prefix added to their constraint code.
- `in` operands are added normally.
- `inout` operands are tied to the matching output operand.
- `sym` operands are passed as function pointers or pointers, using the `"s"` constraint.
- `const` operands are formatted to a string and directly inserted in the template string.
The template string is converted to LLVM form:
- `$` characters are escaped as `$$`.
- `const` operands are converted to strings and inserted directly.
- Placeholders are formatted as `${X:M}` where `X` is the operand index and `M` is the modifier character. Modifiers are converted from the Rust form to the LLVM form.
The various options are converted to clobber constraints or LLVM attributes, refer to the [RFC](https://github.com/Amanieu/rfcs/blob/inline-asm/text/0000-inline-asm.md#mapping-to-llvm-ir) for more details.
Note that LLVM is sometimes rather picky about what types it accepts for certain constraint codes so we sometimes need to insert conversions to/from a supported type. See the target-specific ISelLowering.cpp files in LLVM for details.
# Adding support for new architectures
Adding inline assembly support to an architecture is mostly a matter of defining the registers and register classes for that architecture. All the definitions for register classes are located in `src/librustc_target/asm/`.
Additionally you will need to implement lowering of these register classes to LLVM constraint codes in `src/librustc_codegen_llvm/asm.rs`.
They used to be covered by `optin_builtin_traits` but negative impls
are now applicable to all traits, not just auto traits.
This also adds docs in the unstable book for the current state of auto traits.
Remove spotlight
I had a few comments saying that this feature was at best misunderstood or not even used so I decided to organize a poll about on [twitter](https://twitter.com/imperioworld_/status/1232769353503956994). After 87 votes, the result is very clear: it's not useful. Considering the amount of code we have just to run it, I think it's definitely worth it to remove it.
r? @kinnison
cc @ollie27
Clean up unstable book
- #58402's feature was renamed to `tidy_test_never_used_anywhere_else` and it is now used for tidy only
- `read_initializer` link is wrong and the doc should be auto-generated so removed
- Add dummy doc for `link_cfg`
- Stop generating `compiler_builtins_lib` doc in favor of b8ccc0f8a6
- Make `rustc_attrs` tracking issue "None"
This repr-hint makes a struct/enum hide any niche within from its
surrounding type-construction context.
It is meant (at least initially) as an implementation detail for
resolving issue 68303. We will not stabilize the repr-hint unless
someone finds motivation for doing so.
(So, declaration of `no_niche` feature lives in section of file
where other internal implementation details are grouped, and
deliberately leaves out the tracking issue number.)
incorporated review feedback, and fixed post-rebase.
Initial implementation of `#![feature(move_ref_pattern)]`
Following up on #45600, under the gate `#![feature(move_ref_pattern)]`, `(ref x, mut y)` is allowed subject to restrictions necessary for soundness. The match checking implementation and tests for `#![feature(bindings_after_at)]` is also adjusted as necessary.
Closes#45600.
Tracking issue: #68354.
r? @matthewjasper
See #29864
This has been replaced by `#[feature(marker_trait_attr)]`
A few notes:
* Due to PR #68057 not yet being in the bootstrap compiler, it's
necessary to continue using `#![feature(overlapping_marker_traits)]`
under `#[cfg(bootstrap)]` to work around type inference issues.
* I've updated tests that used `overlapping_marker_traits` to now use
`marker_trait_attr` where applicable
The test `src/test/ui/overlap-marker-trait.rs` doesn't make any sense
now that `overlapping_marker_traits`, so I removed it.
The test `src/test/ui/traits/overlap-permitted-for-marker-traits-neg.rs`
now fails, since it's no longer possible to have multiple overlapping
negative impls of `Send`. I believe that this is the behavior we want
(assuming that `Send` is not going to become a `#[marker]` trait, so I
renamed the test to `overlap-permitted-for-marker-traits-neg`
build-std compatible sanitizer support
### Motivation
When using `-Z sanitizer=*` feature it is essential that both user code and
standard library is instrumented. Otherwise the utility of sanitizer will be
limited, or its use will be impractical like in the case of memory sanitizer.
The recently introduced cargo feature build-std makes it possible to rebuild
standard library with arbitrary rustc flags. Unfortunately, those changes alone
do not make it easy to rebuild standard library with sanitizers, since runtimes
are dependencies of std that have to be build in specific environment,
generally not available outside rustbuild process. Additionally rebuilding them
requires presence of llvm-config and compiler-rt sources.
The goal of changes proposed here is to make it possible to avoid rebuilding
sanitizer runtimes when rebuilding the std, thus making it possible to
instrument standard library for use with sanitizer with simple, although
verbose command:
```
env CARGO_TARGET_X86_64_UNKNOWN_LINUX_GNU_RUSTFLAGS=-Zsanitizer=thread cargo test -Zbuild-std --target x86_64-unknown-linux-gnu
```
### Implementation
* Sanitizer runtimes are no long packed into crates. Instead, libraries build
from compiler-rt are used as is, after renaming them into `librusc_rt.*`.
* rustc obtains runtimes from target libdir for default sysroot, so that
they are not required in custom build sysroots created with build-std.
* The runtimes are only linked-in into executables to address issue #64629.
(in previous design it was hard to avoid linking runtimes into static
libraries produced by rustc as demonstrated by sanitizer-staticlib-link
test, which still passes despite changes made in #64780).
cc @kennytm, @japaric, @firstyear, @choller
Enable `loop` and `while` in constants behind a feature flag
This PR is an initial implementation of #52000. It adds a `const_loop` feature gate, which allows `while` and `loop` expressions through both HIR and MIR const-checkers if enabled. `for` expressions remain forbidden by the HIR const-checker, since they desugar to a call to `IntoIterator::into_iter`, which will be rejected anyways.
`while` loops also require [`#![feature(const_if_match)]`](https://github.com/rust-lang/rust/pull/66507), since they have a conditional built into them. The diagnostics from the HIR const checker will suggest this to the user.
r? @oli-obk
cc @rust-lang/wg-const-eval