This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This commit applies stability attributes to the contents of these modules,
summarized here:
* The `unit` and `bool` modules have become #[unstable] as they are purely meant
for documentation purposes and are candidates for removal.
* The `ty` module has been deprecated, and the inner `Unsafe` type has been
renamed to `UnsafeCell` and moved to the `cell` module. The `marker1` field
has been removed as the compiler now always infers `UnsafeCell` to be
invariant. The `new` method i stable, but the `value` field, `get` and
`unwrap` methods are all unstable.
* The `tuple` module has its name as stable, the naming of the `TupleN` traits
as stable while the methods are all #[unstable]. The other impls in the module
have appropriate stability for the corresponding trait.
* The `arc` module has received the exact same treatment as the `rc` module
previously did.
* The `any` module has its name as stable. The `Any` trait is also stable, with
a new private supertrait which now contains the `get_type_id` method. This is
to make the method a private implementation detail rather than a public-facing
detail.
The two extension traits in the module are marked #[unstable] as they will not
be necessary with DST. The `is` method is #[stable], the as_{mut,ref} methods
have been renamed to downcast_{mut,ref} and are #[unstable].
The extension trait `BoxAny` has been clarified as to why it is unstable as it
will not be necessary with DST.
This is a breaking change because the `marker1` field was removed from the
`UnsafeCell` type. To deal with this change, you can simply delete the field and
only specify the value of the `data` field in static initializers.
[breaking-change]
This PR is the outcome of the library stabilization meeting for the
`liballoc::owned` and `libcore::cell` modules.
Aside from the stability attributes, there are a few breaking changes:
* The `owned` modules is now named `boxed`, to better represent its
contents. (`box` was unavailable, since it's a keyword.) This will
help avoid the misconception that `Box` plays a special role wrt
ownership.
* The `AnyOwnExt` extension trait is renamed to `BoxAny`, and its `move`
method is renamed to `downcast`, in both cases to improve clarity.
* The recently-added `AnySendOwnExt` extension trait is removed; it was
not being used and is unnecessary.
[breaking-change]
Libcore's test infrastructure is complicated by the fact that many lang
items are defined in the crate. The current approach (realcore/realstd
imports) is hacky and hard to work with (tests inside of core::cmp
haven't been run for months!).
Moving tests to a separate crate does mean that they can only test the
public API of libcore, but I don't feel that that is too much of an
issue. The only tests that I had to get rid of were some checking the
various numeric formatters, but those are also exercised through normal
format! calls in other tests.
floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
The following are tagged 'unstable'
- core::clone
- Clone
- Clone::clone
- impl Clone for Arc
- impl Clone for arc::Weak
- impl Clone for Rc
- impl Clone for rc::Weak
- impl Clone for Vec
- impl Clone for Cell
- impl Clone for RefCell
- impl Clone for small tuples
The following are tagged 'experimental'
- Clone::clone_from - may not provide enough utility
- impls for various extern "Rust" fns - may not handle lifetimes correctly
See https://github.com/rust-lang/rust/wiki/Meeting-API-review-2014-06-23#clone
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
This is part of the ongoing renaming of the equality traits. See #12517 for more
details. All code using Eq/Ord will temporarily need to move to Partial{Eq,Ord}
or the Total{Eq,Ord} traits. The Total traits will soon be renamed to {Eq,Ord}.
cc #12517
[breaking-change]
Paper over privacy issues with Deref by changing field names.
Types that implement Deref can cause weird error messages due to their
private fields conflicting with a field of the type they deref to, e.g.,
previously
struct Foo { x: int }
let a: Arc<Foo> = ...;
println!("{}", a.x);
would complain the the `x` field of `Arc` was private (since Arc has a
private field called `x`) rather than just ignoring it.
This patch doesn't fix that issue, but does mean one would have to write
`a._ptr` to hit the same error message, which seems far less
common. (This patch `_`-prefixes all private fields of
`Deref`-implementing types.)
cc #12808
Types that implement Deref can cause weird error messages due to their
private fields conflicting with a field of the type they deref to, e.g.,
previously
struct Foo { x: int }
let a: Arc<Foo> = ...;
println!("{}", a.x);
would complain the the `x` field of `Arc` was private (since Arc has a
private field called `x`) rather than just ignoring it.
This patch doesn't fix that issue, but does mean one would have to write
`a._ptr` to hit the same error message, which seems far less
common. (This patch `_`-prefixes all private fields of
`Deref`-implementing types.)
cc #12808
The span on a inner doc-comment would point to the next token, e.g. the span for the `a` line points to the `b` line, and the span of `b` points to the `fn`.
```rust
//! a
//! b
fn bar() {}
```
This mostly involved frobbing imports between realstd, realcore, and the core
being test. Some of the imports are a little counterintuitive, but it mainly
focuses around libcore's types not implementing Show while libstd's types
implement Show.
fail!() used to require owned strings but can handle static strings
now. Also, it can pass its arguments to fmt!() on its own, no need for
the caller to call fmt!() itself.
Also fixed the docstring on `TC_ONCE_CLOSURE` (was accidentally the same as `TC_MUTABLE`) and shifted the `TC_EMPTY_ENUM` bit left by one since whatever previously used that bit has been removed.
Closes#3083.
This takes a similar approach to #5797 where a set is present on the `tcx` of used mutable definitions. Everything is by default warned about, and analyses must explicitly add mutable definitions to this set so they're not warned about.
Most of this was pretty straightforward, although there was one caveat that I ran into when implementing it. Apparently when the old modes are used (or maybe `legacy_modes`, I'm not sure) some different code paths are taken to cause spurious warnings to be issued which shouldn't be issued. I'm not really sure how modes even worked, so I was having a lot of trouble tracking this down. I figured that because they're a legacy thing that I'd just de-mode the compiler so that the warnings wouldn't be a problem anymore (or at least for the compiler).
Other than that, the entire compiler compiles without warnings of unused mutable variables. To prevent bad warnings, #5965 should be landed (which in turn is waiting on #5963) before landing this. I figured I'd stick it out for review anyway though.
use core::cell;
fn main() {
let x = cell::Cell(Some(~"foo"));
let y = x.value.get_ref().get_ref();
do x.with_mut_ref |z| { *z = None; }
println(*y) // boom!
}
For bootstrapping purposes, this commit does not remove all uses of
the keyword "pure" -- doing so would cause the compiler to no longer
bootstrap due to some syntax extensions ("deriving" in particular).
Instead, it makes the compiler ignore "pure". Post-snapshot, we can
remove "pure" from the language.
There are quite a few (~100) borrow check errors that were essentially
all the result of mutable fields or partial borrows of `@mut`. Per
discussions with Niko I think we want to allow partial borrows of
`@mut` but detect obvious footguns. We should also improve the error
message when `@mut` is erroneously reborrowed.