This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
The invocation for making a directory should be able to specify a mode to make
the directory with (instead of defaulting to one particular mode). Additionally,
libuv and various OSes implement efficient versions of renaming files, so this
operation is exposed as an IoFactory call.
Almost all languages provide some form of buffering of the stdout stream, and
this commit adds this feature for rust. A handle to stdout is lazily initialized
in the Task structure as a buffered owned Writer trait object. The buffer
behavior depends on where stdout is directed to. Like C, this line-buffers the
stream when the output goes to a terminal (flushes on newlines), and also like C
this uses a fixed-size buffer when output is not directed at a terminal.
We may decide the fixed-size buffering is overkill, but it certainly does reduce
write syscall counts when piping output elsewhere. This is a *huge* benefit to
any code using logging macros or the printing macros. Formatting emits calls to
`write` very frequently, and to have each of them backed by a write syscall was
very expensive.
In a local benchmark of printing 10000 lines of "what" to stdout, I got the
following timings:
when | terminal | redirected
----------------------------------
before | 0.575s | 0.525s
after | 0.197s | 0.013s
C | 0.019s | 0.004s
I can also confirm that we're buffering the output appropriately in both
situtations. We're still far slower than C, but I believe much of that has to do
with the "homing" that all tasks due, we're still performing an order of
magnitude more write syscalls than C does.
When uv's TTY I/O is used for the stdio streams, the file descriptors are put
into a non-blocking mode. This means that other concurrent writes to the same
stream can fail with EAGAIN or EWOULDBLOCK. By all I/O to event-loop I/O, we
avoid this error.
There is one location which cannot move, which is the runtime's dumb_println
function. This was implemented to handle the EAGAIN and EWOULDBLOCK errors and
simply retry again and again.
This is a re-landing of #8645, except that the bindings are *not* being used to
power std::run just yet. Instead, this adds the bindings as standalone bindings
inside the rt::io::process module.
I made one major change from before, having to do with how pipes are
created/bound. It's much clearer now when you can read/write to a pipe, as
there's an explicit difference (different types) between an unbound and a bound
pipe. The process configuration now takes unbound pipes (and consumes ownership
of them), and will return corresponding pipe structures back if spawning is
successful (otherwise everything is destroyed normally).
std: remove unneeded field from RequestData struct
std: rt::uv::file - map us_fs_stat & start refactoring calls into FsRequest
std: stubbing out stat calls from the top-down into uvio
std: us_fs_* operations are now by-val self methods on FsRequest
std: post-rebase cleanup
std: add uv_fs_mkdir|rmdir + tests & minor test cleanup in rt::uv::file
WORKING: fleshing out FileStat and FileInfo + tests
std: reverting test files..
refactoring back and cleanup...
This is a reopening of the libuv-upgrade part of #8645. Hopefully this won't
cause random segfaults all over the place. The windows regression in testing
should also be fixed (it shouldn't build the whole compiler twice).
A notable difference from before is that gyp is now a git submodule instead of
always git-cloned at make time. This allows bundling for releases more easily.
Closes#8850
There were two main differences with the old libuv and the master version:
1. The uv_last_error function is now gone. The error code returned by each
function is the "last error" so now a UvError is just a wrapper around a
c_int.
2. The repo no longer includes a makefile, and the build system has change.
According to the build directions on joyent/libuv, this now downloads a `gyp`
program into the `libuv/build` directory and builds using that. This
shouldn't add any dependences on autotools or anything like that.
Closes#8407Closes#6567Closes#6315