Use it instead of a `panic` for inexhaustive matches and correct the
comment. I think we trust our match-generation algorithm enough to
generate these blocks, and not generating an `unreachable` means that
LLVM won't optimize `match void() {}` to an `unreachable`.
this introduces a DropAndReplace terminator as a fix to #30380. That terminator
is suppsoed to be translated by desugaring during drop elaboration, which is
not implemented in this commit, so this breaks `-Z orbit` temporarily.
Only break critical edges where actually needed
Currently, to prepare for MIR trans, we break _all_ critical edges,
although we only actually need to do this for edges originating from a
call that gets translated to an invoke instruction in LLVM.
This has the unfortunate effect of undoing a bunch of the things that
SimplifyCfg has done. A particularly bad case arises when you have a
C-like enum with N variants and a derived PartialEq implementation.
In that case, the match on the (&lhs, &rhs) tuple gets translated into
nested matches with N arms each and a basic block each, resulting in N²
basic blocks. SimplifyCfg reduces that to roughly 2*N basic blocks, but
breaking the critical edges means that we go back to N².
In nickel.rs, there is such an enum with roughly N=800. So we get about
640K basic blocks or 2.5M lines of LLVM IR. LLVM takes a while to
reduce that to the final "disr_a == disr_b".
So before this patch, we had 2.5M lines of IR with 640K basic blocks,
which took about about 3.6s in LLVM to get optimized and translated.
After this patch, we get about 650K lines with about 1.6K basic blocks
and spent a little less than 0.2s in LLVM.
cc #33111
r? @Aatch
mir: don't attempt to promote Unpromotable constant temps.
Fixes#33537. This was a non-problem in regular functions, but we also promote in `const fn`s.
There we always qualify temps so you can't depend on `Unpromotable` temps being `NOT_CONST`.
Currently, to prepare for MIR trans, we break _all_ critical edges,
although we only actually need to do this for edges originating from a
call that gets translated to an invoke instruction in LLVM.
This has the unfortunate effect of undoing a bunch of the things that
SimplifyCfg has done. A particularly bad case arises when you have a
C-like enum with N variants and a derived PartialEq implementation.
In that case, the match on the (&lhs, &rhs) tuple gets translated into
nested matches with N arms each and a basic block each, resulting in N²
basic blocks. SimplifyCfg reduces that to roughly 2*N basic blocks, but
breaking the critical edges means that we go back to N².
In nickel.rs, there is such an enum with roughly N=800. So we get about
640K basic blocks or 2.5M lines of LLVM IR. LLVM takes a while to
reduce that to the final "disr_a == disr_b".
So before this patch, we had 2.5M lines of IR with 640K basic blocks,
which took about about 3.6s in LLVM to get optimized and translated.
After this patch, we get about 650K lines with about 1.6K basic blocks
and spent a little less than 0.2s in LLVM.
cc #33111
Once upon a time, along with START_BLOCK and END_BLOCK in the castle of important blocks also lived
a RESUME_BLOCK (or was it UNWIND_BLOCK? Either works, I don’t remember anymore). This trinity of
important blocks were required to always exist from the birth to death of the MIR-land they
belonged to.
Some time later, it was discovered that RESUME_BLOCK was just a lazy goon enjoying comfortable life
in the light of fame of the other two. Needless to say, once found out, the RESUME_BLOCK was
quickly slain and disposed of.
Now, the all-seeing eye of ours discovers that END_BLOCK is actually the more evil and better
disguised twin of the slain RESUME_BLOCK. Thus END_BLOCK gets slain and quickly disposed
of. Glory to the START_BLOCK, one and only lord of the important blocks’ castle!
---
Basically, all this does, is removing restriction for END_BLOCK to exist past the first invocation
of RemoveDeadBlocks pass. This way for functions whose CFG does not reach the `END_BLOCK` end up
not containing the block.
As far as the implementation goes, I’m not entirely satisfied with the `BasicBlock::end_block`, I
had hoped to make `new` a `const fn` and then just have a `const END_BLOCK` private to mir::build,
but it turns out that constant functions don’t yet support conditionals nor a way to assert.
Plumb obligations through librustc/infer
Like #32542, but more like #31867.
TODO before merge: make an issue for the propagation of obligations through... uh, everywhere... then replace the `#????`s with the actual issue number.
cc @jroesch
r? @nikomatsakis
rBreak Critical Edges and other MIR work
This PR is built on top of #32080.
This adds the basic depth-first traversals for MIR, preorder, postorder and reverse postorder. The MIR blocks are now translated using reverse postorder. There is also a transform for breaking critical edges, which includes the edges from `invoke`d calls (`Drop` and `Call`), to account for the fact that we can't add code after an `invoke`. It also stops generating the intermediate block (since the transform essentially does it if necessary already).
The kinds of cases this deals with are difficult to produce, so the test is the one I managed to get. However, it seems to bootstrap with `-Z orbit`, which it didn't before my changes.
Also adds a new set of passes to run just before translation that
"prepare" the MIR for codegen. Removal of landing pads, region erasure
and break critical edges are run in this pass.
Also fixes some merge/rebase errors.