This also changes how variant values are printed in errors, they are no
longer printed in their parent scope. As far as I can tell, this is
leftover from pre-namespacing of enums.
Closes#17546.
Transition to the new object lifetime defaults, replacing the old defaults completely.
r? @pnkfelix
This is a [breaking-change] as specified by [RFC 1156][1156] (though all cases that would break should have been receiving warnings starting in Rust 1.2). Types like `&'a Box<Trait>` (or `&'a Rc<Trait>`, etc) will change from being interpreted as `&'a Box<Trait+'a>` to `&'a Box<Trait+'static>`. To restore the old behavior, write the `+'a` explicitly. For example, the function:
```rust
trait Trait { }
fn foo(x: &Box<Trait>) { ... }
```
would be rewritten as:
```rust
trait Trait { }
fn foo(x: &'a Box<Trait+'a>) { ... }
```
if one wanted to preserve the current typing.
[1156]: https://github.com/rust-lang/rfcs/blob/master/text/1156-adjust-default-object-bounds.md
LLVM has recently created their 3.7 release branch, and this PR updates us to that point. This should hopefully mean that we're basically compatible with the upcoming 3.7 release. Additionally, there are a number of goodies on this branch.
* This contains a fix for https://llvm.org/bugs/show_bug.cgi?id=23957
which should help us bootstrap farther on 32-bit MSVC targets.
* There is better support for writing multiple flavors of archives, allowing us
to use the built-in LLVM support instead of the system `ar` on all current
platforms of the compiler.
* This LLVM has SafeStack support
* An [optimization patch](7cf5e26e18) by @pcwalton is included.
* A number of other minor test fixes here and there.
Due to problems dealing with the data layout we pass to LLVM, this PR also takes the time to clean up how we specific this. We no longer specify a data layout to LLVM by default and instead take the default for the target from LLVM to pass to the module that we're building. This should be more robust going into the future, and I'm also not sure we know what any of these arcane strings are any more...
This also changes how variant values are printed in errors, they are no
longer printed in their parent scope. As far as I can tell, this is
leftover from pre-namespacing of enums.
Closes#17546.
Turns out for OSX our data layout was subtly wrong and the LLVM update must have
exposed this. Instead of fixing this I've removed all data layouts from the
compiler to just use the defaults that LLVM provides for all targets. All data
layouts (and a number of dead modules) are removed from the compiler here.
Custom target specifications can still provide a custom data layout, but it is
now an optional key as the default will be used if one isn't specified.
This PR modernizes some names in the type checker. The only remaining snake_case name in ty.rs is `ctxt` which should be resolved by @eddyb's pending refactor. We can bike shed over the names, it would just be nice to bring the type checker inline with modern Rust.
r? @eddyb
cc @nikomatsakis
We have previously always relied upon an external tool, `ar`, to modify archives
that the compiler produces (staticlibs, rlibs, etc). This approach, however, has
a number of downsides:
* Spawning a process is relatively expensive for small compilations
* Encoding arguments across process boundaries often incurs unnecessary overhead
or lossiness. For example `ar` has a tough time dealing with files that have
the same name in archives, and the compiler copies many files around to ensure
they can be passed to `ar` in a reasonable fashion.
* Most `ar` programs found do **not** have the ability to target arbitrary
platforms, so this is an extra tool which needs to be found/specified when
cross compiling.
The LLVM project has had a tool called `llvm-ar` for quite some time now, but it
wasn't available in the standard LLVM libraries (it was just a standalone
program). Recently, however, in LLVM 3.7, this functionality has been moved to a
library and is now accessible by consumers of LLVM via the `writeArchive`
function.
This commit migrates our archive bindings to no longer invoke `ar` by default
but instead make a library call to LLVM to do various operations. This solves
all of the downsides listed above:
* Archive management is now much faster, for example creating a "hello world"
staticlib is now 6x faster (50ms => 8ms). Linking dynamic libraries also
recently started requiring modification of rlibs, and linking a hello world
dynamic library is now 2x faster.
* The compiler is now one step closer to "hassle free" cross compilation because
no external tool is needed for managing archives, LLVM does the right thing!
This commit does not remove support for calling a system `ar` utility currently.
We will continue to maintain compatibility with LLVM 3.5 and 3.6 looking forward
(so the system LLVM can be used wherever possible), and in these cases we must
shell out to a system utility. All nightly builds of Rust, however, will stop
needing a system `ar`.
We have previously always relied upon an external tool, `ar`, to modify archives
that the compiler produces (staticlibs, rlibs, etc). This approach, however, has
a number of downsides:
* Spawning a process is relatively expensive for small compilations
* Encoding arguments across process boundaries often incurs unnecessary overhead
or lossiness. For example `ar` has a tough time dealing with files that have
the same name in archives, and the compiler copies many files around to ensure
they can be passed to `ar` in a reasonable fashion.
* Most `ar` programs found do **not** have the ability to target arbitrary
platforms, so this is an extra tool which needs to be found/specified when
cross compiling.
The LLVM project has had a tool called `llvm-ar` for quite some time now, but it
wasn't available in the standard LLVM libraries (it was just a standalone
program). Recently, however, in LLVM 3.7, this functionality has been moved to a
library and is now accessible by consumers of LLVM via the `writeArchive`
function.
This commit migrates our archive bindings to no longer invoke `ar` by default
but instead make a library call to LLVM to do various operations. This solves
all of the downsides listed above:
* Archive management is now much faster, for example creating a "hello world"
staticlib is now 6x faster (50ms => 8ms). Linking dynamic libraries also
recently started requiring modification of rlibs, and linking a hello world
dynamic library is now 2x faster.
* The compiler is now one step closer to "hassle free" cross compilation because
no external tool is needed for managing archives, LLVM does the right thing!
This commit does not remove support for calling a system `ar` utility currently.
We will continue to maintain compatibility with LLVM 3.5 and 3.6 looking forward
(so the system LLVM can be used wherever possible), and in these cases we must
shell out to a system utility. All nightly builds of Rust, however, will stop
needing a system `ar`.
In a followup to PR #26849, improve one more location for I/O where
we can use `Vec::resize` to ensure better performance when zeroing
buffers.
Use the `vec![elt; n]` macro everywhere we can in the tree. It replaces
`repeat(elt).take(n).collect()` which is more verbose, requires type
hints, and right now produces worse code. `vec![]` is preferable for vector
initialization.
The `vec![]` replacement touches upon one I/O path too, Stdin::read
for windows, and that should be a small improvement.
r? @alexcrichton
The common pattern `iter::repeat(elt).take(n).collect::<Vec<_>>()` is
exactly equivalent to `vec![elt; n]`, do this replacement in the whole
tree.
(Actually, vec![] is smart enough to only call clone n - 1 times, while
the former solution would call clone n times, and this fact is
virtually irrelevant in practice.)
Fixes#23302.
Note that there's an odd situation regarding the following, most likely due to some inadequacy in `const_eval`:
```rust
enum Y {
A = 1usize,
B,
}
```
In this case, `Y::B as usize` might be considered a constant expression in some cases, but not others. (See #23513, for a related problem where there is only one variant, with no discriminant, and it doesn't behave nicely as a constant expression either.)
Most of the complexity in this PR is basically future-proofing, to ensure that when `Y::B as usize` is fully made to be a constant expression, it can't be used to set `Y::A`, and thus indirectly itself.
This commit alters the implementation of multiple codegen units slightly to be
compatible with the MSVC linker. Currently the implementation will take the N
object files created by each codegen unit and will run `ld -r` to create a new
object file which is then passed along. The MSVC linker, however, is not able to
do this operation.
The compiler will now no longer attempt to assemble object files together but
will instead just pass through all the object files as usual. This implies that
rlibs may not contain more than one object file (if the library is compiled with
more than one codegen unit) and the output of `-C save-temps` will have changed
slightly as object files with the extension `0.o` will not be renamed to `o`
unless requested otherwise.
This commit starts passing the `--whole-archive` flag (`-force_load` on OSX) to
the linker when linking rlibs into dylibs. The primary purpose of this commit is
to ensure that the linker doesn't strip out objects from an archive when
creating a dynamic library. Information on how this can go wrong can be found in
issues #14344 and #25185.
The unfortunate part about passing this flag to the linker is that we have to
preprocess the rlib to remove the metadata and compressed bytecode found within.
This means that creating a dylib will now take longer to link as we've got to
copy around the input rlibs to a temporary location, modify them, and then
invoke the linker. This isn't done for executables, however, so the "hello
world" compile time is not affected.
This fix was instigated because of the previous commit where rlibs may not
contain multiple object files instead of one due to codegen units being greater
than one. That change prevented the main distribution from being compiled with
more than one codegen-unit and this commit fixes that.
Closes#14344Closes#25185
`MethodCallee` now has no information about the method, other than its `DefId`.
The previous bits of information can be recovered as follows:
```rust
let method_item = tcx.impl_or_trait_item(callee.def_id);
let container = method_item.container();
```
The method is inherent if `container` is a `ty::ImplContainer`:
* the `impl` the method comes from is `container.id()`
The method is a trait method if `container` is a `ty::TraitContainer:
* the `trait` the method is part of is `container.id()`
* a `ty::TraitRef` can be constructed by putting together:
* `container.id()` as the `trait` ID
* `callee.substs.clone().method_to_trait()` as the `trait` substs (including `Self`)
* the above `trait_ref` is a valid `T: Trait<A, B, C>` predicate
* selecting `trait_ref` could result in one of the following:
* `traits::VtableImpl(data)`: static dispatch to `data.impl_def_id`
* `traits::VtableObject(data)`: dynamic dispatch, with the vtable index:
`traits::get_vtable_index_of_object_method(tcx, data, callee.def_id)`
* other variants of `traits::Vtable`: various other `impl` sources