Run LLVM coverage instrumentation passes before optimization passes
This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.
Fixes#83429
cc `@richkadel`
r? `@tmandry`
When the problem for a method not being found in its receiver is due to
arbitrary self-types, we don't want to mention importing or implementing
the trait, instead we suggest wrapping.
This matches the behavior of Clang and allows us to remove several
hacks which were needed to ensure functions weren't optimized away
before reaching the instrumentation pass.
Refactor rustc_resolve::late::lifetimes to resolve per-item
There are some changes to tests that I'd like some feedback on; so this is still WIP.
The reason behind this change will (hopefully) allow us to (as part of #76814) be able to essentially use the lifetime resolve code to resolve *all* late bound vars (including those of super traits). Currently, it only resolves those that are *syntactically* in scope. In #76814, I'm essentially finding that I would essentially have to redo the passing of bound vars through scopes (i.e. when instantiating a poly trait ref), and that's what this code does anyways. However, to be able to do this (ask super traits what bound vars are in scope), we have to be able to resolve items separately.
The first commit is actually partially orthogonal. Essentially removing one use of late bound debruijn indices.
Not exactly sure who would be best to review here.
Let r? `@nikomatsakis`
coverage bug fixes and optimization support
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
FYI: `@wesleywiser`
r? `@tmandry`
2229 migration: Don't try resolve regions before writeback
In the analysis use `resolve_vars_if_possible` instead of `fully_resolve`,
because we might not have performed regionck yet.
Fixes: #83176
r? `@nikomatsakis`
This currently creates a field which is always false on GenericParamDefKind for future use when
consts are permitted to have defaults
Update const_generics:default locations
Previously just ignored them, now actually do something about them.
Fix using type check instead of value
Add parsing
This adds all the necessary changes to lower const-generics defaults from parsing.
Change P<Expr> to AnonConst
This matches the arguments passed to instantiations of const generics, and makes it specific to
just anonymous constants.
Attempt to fix lowering bugs
Revert performance-sensitive change in #82436
This change was done in #82436, as an "optimization". Unfortunately I
missed that this code is not always executed, because of the "continue"
in the conditional above it.
This commit should solve the perf regressions introduced by #82436 as I
think there isn't anything else that could affect runtime performance in
that PR. The `Pick` type grows only one word, which I doubt can cause up
to 8.8% increase in RSS in some of the benchmarks.
---
Could someone with the rights start a perf job please?
Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to
address multiple, somewhat related issues.
Fixed a significant flaw in prior coverage solution: Every counter
generated a new counter variable, but there should have only been one
counter variable per function. This appears to have bloated .profraw
files significantly. (For a small program, it increased the size by
about 40%. I have not tested large programs, but there is anecdotal
evidence that profraw files were way too large. This is a good fix,
regardless, but hopefully it also addresses related issues.
Fixes: #82144
Invalid LLVM coverage data produced when compiled with -C opt-level=1
Existing tests now work up to at least `opt-level=3`. This required a
detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR
when compiled with coverage, and a lot of trial and error with codegen
adjustments.
The biggest hurdle was figuring out how to continue to support coverage
results for unused functions and generics. Rust's coverage results have
three advantages over Clang's coverage results:
1. Rust's coverage map does not include any overlapping code regions,
making coverage counting unambiguous.
2. Rust generates coverage results (showing zero counts) for all unused
functions, including generics. (Clang does not generate coverage for
uninstantiated template functions.)
3. Rust's unused functions produce minimal stubbed functions in LLVM IR,
sufficient for including in the coverage results; while Clang must
generate the complete LLVM IR for each unused function, even though
it will never be called.
This PR removes the previous hack of attempting to inject coverage into
some other existing function instance, and generates dedicated instances
for each unused function. This change, and a few other adjustments
(similar to what is required for `-C link-dead-code`, but with lower
impact), makes it possible to support LLVM optimizations.
Fixes: #79651
Coverage report: "Unexecuted instantiation:..." for a generic function
from multiple crates
Fixed by removing the aforementioned hack. Some "Unexecuted
instantiation" notices are unavoidable, as explained in the
`used_crate.rs` test, but `-Zinstrument-coverage` has new options to
back off support for either unused generics, or all unused functions,
which avoids the notice, at the cost of less coverage of unused
functions.
Fixes: #82875
Invalid LLVM coverage data produced with crate brotli_decompressor
Fixed by disabling the LLVM function attribute that forces inlining, if
`-Z instrument-coverage` is enabled. This attribute is applied to
Rust functions with `#[inline(always)], and in some cases, the forced
inlining breaks coverage instrumentation and reports.
This change was done in #82436, as an "optimization". Unfortunately I
missed that this code is not always executed, because of the "continue"
in the conditional above it.
This commit should solve the perf regressions introduced by #82436 as I
think there isn't anything else that could affect runtime performance in
that PR. The `Pick` type grows only one word, which I doubt can cause up
to 8.8% increase in RSS in some of the benchmarks.
make changes to liveness to use closure_min_captures
use different span
borrow check uses new structures
rename to CapturedPlace
stop using upvar_capture in regionck
remove the bridge
cleanup from rebase + remove the upvar_capture reference from mutability_errors.rs
remove line from livenes test
make our unused var checking more consistent
update tests
adding more warnings to the tests
move is_ancestor_or_same_capture to rustc_middle/ty
update names to reflect the closures
add FIXME
check that all captures are immutable borrows before returning
add surrounding if statement like the original
move var out of the loop and rename
Co-authored-by: Logan Mosier <logmosier@gmail.com>
Co-authored-by: Roxane Fruytier <roxane.fruytier@hotmail.com>
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
More precise spans for HIR paths
`Ty::assoc_item` is lowered to `<Ty>::assoc_item` in HIR, but `Ty` got span from the whole path.
This PR fixes that, and adjusts some diagnostic code that relied on `Ty` having the whole path span.
This is a pre-requisite for https://github.com/rust-lang/rust/pull/82868 (we cannot report suggestions like `Tr::assoc` -> `<dyn Tr>::assoc` with the current imprecise spans).
r? ````@estebank````
2229: Handle patterns within closures correctly when `capture_disjoint_fields` is enabled
This PR fixes several issues related to handling patterns within closures when `capture_disjoint_fields` is enabled.
1. Matching is always considered a use of the place, even with `_` patterns
2. Compiler ICE when capturing fields in closures through `let` assignments
To do so, we
- Introduced new Fake Reads
- Delayed use of `Place` in favor of `PlaceBuilder`
- Ensured that `PlaceBuilder` can be resolved before attempting to extract `Place` in any of the pattern matching code
Closes rust-lang/project-rfc-2229/issues/27
Closes rust-lang/project-rfc-2229/issues/24
r? `@nikomatsakis`
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
Add a `min_type_alias_impl_trait` feature gate
This new feature gate only permits type alias impl trait to be constrained by function and trait method return types. All other possible constraining sites like const/static types, closure return types and binding types are now forbidden and gated under the `type_alias_impl_trait` and `impl_trait_in_bindings` feature gates (which are both marked as incomplete, as they have various ways to ICE the compiler or cause query cycles where they shouldn't).
r? `@nikomatsakis`
This is best reviewed commit-by-commit