There have been some recent panics on the bots and this commit is an attempt to
appease them. Previously it was considered invalid to run `rt::at_exit` after
the handlers had already started running. Due to the multithreaded nature of
applications, however, it is not always possible to guarantee this. For example
[this program][ex] will show off the abort.
[ex]: https://gist.github.com/alexcrichton/56300b87af6fa554e52d
The semantics of the `rt::at_exit` function have been modified as such:
* It is now legal to call `rt::at_exit` at any time. The return value now
indicates whether the closure was successfully registered or not. Callers must
now decide what to do with this information.
* The `rt::at_exit` handlers will now be run for a fixed number of iterations.
Common cases (such as the example shown) may end up registering a new handler
while others are running perhaps once or twice, so this common condition is
covered by re-running the handlers a fixed number of times, after which new
registrations are forbidden.
Some usage of `rt::at_exit` was updated to handle these new semantics, but
deprecated or unstable libraries calling `rt::at_exit` were not updated.
This is an implementation of RFC 899 and adds stdio functionality to the new
`std::io` module. Details of the API can be found on the RFC, but from a high
level:
* `io::{stdin, stdout, stderr}` constructors are now available. There are also
`*_raw` variants for unbuffered and unlocked access.
* All handles are globally shared (excluding raw variants).
* The stderr handle is no longer buffered.
* All handles can be explicitly locked (excluding the raw variants).
The `print!` and `println!` machinery has not yet been hooked up to these
streams just yet. The `std::fmt::output` module has also not yet been
implemented as part of this commit.