Commit Graph

76 Commits

Author SHA1 Message Date
bors
18bfe5d8a9 Auto merge of #92048 - Urgau:num-midpoint, r=scottmcm
Add midpoint function for all integers and floating numbers

This pull-request adds the `midpoint` function to `{u,i}{8,16,32,64,128,size}`, `NonZeroU{8,16,32,64,size}` and `f{32,64}`.

This new function is analog to the [C++ midpoint](https://en.cppreference.com/w/cpp/numeric/midpoint) function, and basically compute `(a + b) / 2` with a rounding towards ~~`a`~~ negative infinity in the case of integers. Or simply said: `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a sufficiently-large signed integral type.

Note that unlike the C++ function this pull-request does not implement this function on pointers (`*const T` or `*mut T`). This could be implemented in a future pull-request if desire.

### Implementation

For `f32` and `f64` the implementation in based on the `libcxx` [one](18ab892ff7/libcxx/include/__numeric/midpoint.h (L65-L77)). I originally tried many different approach but all of them failed or lead me with a poor version of the `libcxx`. Note that `libstdc++` has a very similar one; Microsoft STL implementation is also basically the same as `libcxx`. It unfortunately doesn't seems like a better way exist.

For unsigned integers I created the macro `midpoint_impl!`, this macro has two branches:
 - The first one take `$SelfT` and is used when there is no unsigned integer with at least the double of bits. The code simply use this formula `a + (b - a) / 2` with the arguments in the correct order and signs to have the good rounding.
 - The second branch is used when a `$WideT` (at least double of bits as `$SelfT`) is provided, using a wider number means that no overflow can occur, this greatly improve the codegen (no branch and less instructions).

For signed integers the code basically forwards the signed numbers to the unsigned version of midpoint by mapping the signed numbers to their unsigned numbers (`ex: i8 [-128; 127] to [0; 255]`) and vice versa.
I originally created a version that worked directly on the signed numbers but the code was "ugly" and not understandable. Despite this mapping "overhead" the codegen is better than my most optimized version on signed integers.

~~Note that in the case of unsigned numbers I tried to be smart and used `#[cfg(target_pointer_width = "64")]` to determine if using the wide version was better or not by looking at the assembly on godbolt. This was applied to `u32`, `u64` and `usize` and doesn't change the behavior only the assembly code generated.~~
2023-05-14 19:33:02 +00:00
Matthias Krüger
9babe98562
Rollup merge of #110419 - jsoref:spelling-library, r=jyn514
Spelling library

Split per https://github.com/rust-lang/rust/pull/110392

I can squash once people are happy w/ the changes. It's really uncommon for large sets of changes to be perfectly acceptable w/o at least some changes.

I probably won't have time to respond until tomorrow or the next day
2023-04-26 18:51:41 +02:00
Loïc BRANSTETT
bf73234d92 Implement midpoint for all floating point f32 and f64 2023-04-26 10:18:53 +02:00
Loïc BRANSTETT
1a72d7c7c4 Implement midpoint for all signed and unsigned integers 2023-04-26 10:18:53 +02:00
Josh Soref
9cb9346005 Spelling library/
* advance
* aligned
* borrowed
* calculate
* debugable
* debuggable
* declarations
* desugaring
* documentation
* enclave
* ignorable
* initialized
* iterator
* kaboom
* monomorphization
* nonexistent
* optimizer
* panicking
* process
* reentrant
* rustonomicon
* the
* uninitialized

Signed-off-by: Josh Soref <2119212+jsoref@users.noreply.github.com>
2023-04-26 02:10:22 -04:00
bors
3a5c8e91f0 Auto merge of #110393 - fee1-dead-contrib:rm-const-traits, r=oli-obk
Rm const traits in libcore

See [zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60const.20Trait.60.20removal.20or.20rework)

* [x] Bless ui tests
* [ ] Re constify some unstable functions with workarounds if they are needed
2023-04-19 13:03:40 +00:00
Deadbeef
4c6ddc036b fix library and rustdoc tests 2023-04-16 11:38:52 +00:00
est31
77821b2eb9 Remove unused unused_macros
The macro is always used
2023-04-16 08:35:39 +02:00
Tobias Decking
65c9c79d3f
remove obsolete test 2023-04-10 21:57:45 +02:00
Tobias Decking
0f96c71792 Improve the floating point parser in dec2flt.
* Remove all remaining traces of unsafe.
* Put `parse_8digits` inside a loop.
* Rework parsing of inf/NaN values.
2023-04-10 00:47:08 +02:00
Nikolai Vazquez
734a91358b Remove unnecessary &format!
These were likely from before the `PartialEq<str>` impl for `&String`.
2023-01-21 22:06:42 -05:00
Thom Chiovoloni
a4bf36e87b
Update rand in the stdlib tests, and remove the getrandom feature from it 2023-01-04 14:52:41 -08:00
bors
e702534763 Auto merge of #102935 - ajtribick:display-float-0.5-fixed-0, r=scottmcm
Fix inconsistent rounding of 0.5 when formatted to 0 decimal places

As described in #70336, when displaying values to zero decimal places the value of 0.5 is rounded to 1, which is inconsistent with the display of other half-integer values which round to even.

From testing the flt2dec implementation, it looks like this comes down to the condition in the fixed-width Dragon implementation where an empty buffer is treated as a case to apply rounding up. I believe the change below fixes it and updates only the relevant tests.

Nevertheless I am aware this is very much a core piece of functionality, so please take a very careful look to make sure I haven't missed anything. I hope this change does not break anything in the wider ecosystem as having a consistent rounding behaviour in floating point formatting is in my opinion a useful feature to have.

Resolves #70336
2022-11-16 07:20:30 +00:00
Rageking8
7122abaddf more dupe word typos 2022-10-14 12:57:56 +08:00
Dylan DPC
d8091f8991
Rollup merge of #102578 - lukas-code:ilog-panic, r=m-ou-se
Panic for invalid arguments of `{integer primitive}::ilog{,2,10}` in all modes

Decision made in https://github.com/rust-lang/rust/issues/100422#issuecomment-1245864700

resolves https://github.com/rust-lang/rust/issues/100422

tracking issue: https://github.com/rust-lang/rust/issues/70887

r? `@m-ou-se`
2022-10-12 11:11:25 +05:30
Andrew Tribick
848744403a Fix inconsistent rounding of 0.5 when formatted to 0 decimal places 2022-10-11 23:09:23 +02:00
Ralf Jung
fd59d44f58 make const_err a hard error 2022-10-07 18:08:49 +02:00
Lukas Markeffsky
6acc29f88b add tests for panicking integer logarithms 2022-10-02 14:25:36 +02:00
bors
7200da0217 Auto merge of #93873 - Stovent:big-ints, r=m-ou-se
Reimplement `carrying_add` and `borrowing_sub` for signed integers.

As per the discussion in #85532, this PR reimplements `carrying_add` and `borrowing_sub` for signed integers.

It also adds unit tests for both unsigned and signed integers, emphasing on the behaviours of the methods.
2022-09-09 00:59:08 +00:00
Eric Holk
c18f22058b Rename integer log* methods to ilog*
This reflects the concensus from the libs team as reported at
https://github.com/rust-lang/rust/issues/70887#issuecomment-1209513261

Co-authored-by: Yosh Wuyts <github@yosh.is>
2022-08-09 10:20:49 -07:00
Stovent
1266099742 Implement carrying_add and borrowing_sub on signed numbers 2022-05-30 18:32:27 -04:00
Jacob Pratt
dde590d180
Update int_roundings methods from feedback 2022-05-04 23:20:29 -04:00
est31
3c1e1661e7 Remove unused macro rules 2022-04-18 23:28:06 +02:00
bors
4e1927db3c Auto merge of #95399 - gilescope:plan_b, r=scottmcm
Faster parsing for lower numbers for radix up to 16 (cont.)

( Continuation of https://github.com/rust-lang/rust/pull/83371 )

With LingMan's change I think this is potentially ready.
2022-04-12 05:54:50 +00:00
Giles Cope
3ee7bb19c6
better def of is signed in tests. 2022-04-11 07:37:53 +01:00
Giles Cope
515906a669
Use Add, Sub, Mul traits instead of unsafe 2022-04-10 18:13:48 +01:00
Giles Cope
82e9d9ebac
from_u32(0) can just be default() 2022-04-04 15:53:53 +01:00
Ralf Jung
487bd8184f skip slow int_log tests in Miri 2022-03-31 11:48:51 -04:00
T-O-R-U-S
72a25d05bf Use implicit capture syntax in format_args
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.

A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
2022-03-10 10:23:40 -05:00
Ralf Jung
6739299d18 Miri/CTFE: properly treat overflow in (signed) division/rem as UB 2022-03-01 20:39:51 -05:00
Christopher Swenson
424f38f211 Simplification of BigNum::bit_length
As indicated in the comment, the BigNum::bit_length function could be
optimized by using CLZ, which is often a single instruction instead a
loop.

I think the code is also simpler now without the loop.

I added some additional tests for Big8x3 and Big32x40 to ensure that
there were no regressions.
2022-01-10 14:18:28 -08:00
Jacob Pratt
41f70f3491
Revert "Temporarily rename int_roundings functions to avoid conflicts"
This reverts commit 3ece63b64e.
2021-11-22 15:49:04 -05:00
Loïc BRANSTETT
a8ee0e9c2c Implement IEEE 754-2019 minimun and maximum functions for f32/f64 2021-11-20 10:14:03 +01:00
bors
ffdf18d144 Auto merge of #88788 - falk-hueffner:speedup-int-log10-branchless, r=joshtriplett
Speedup int log10 branchless

This is achieved with a branchless bit-twiddling implementation of the case x < 100_000, and using this as building block.

Benchmark on an Intel i7-8700K (Coffee Lake):

```
name                                   old ns/iter  new ns/iter  diff ns/iter   diff %  speedup
num::int_log::u8_log10_predictable     165          169                     4    2.42%   x 0.98
num::int_log::u8_log10_random          438          423                   -15   -3.42%   x 1.04
num::int_log::u8_log10_random_small    438          423                   -15   -3.42%   x 1.04
num::int_log::u16_log10_predictable    633          417                  -216  -34.12%   x 1.52
num::int_log::u16_log10_random         908          471                  -437  -48.13%   x 1.93
num::int_log::u16_log10_random_small   945          471                  -474  -50.16%   x 2.01
num::int_log::u32_log10_predictable    1,496        1,340                -156  -10.43%   x 1.12
num::int_log::u32_log10_random         1,076        873                  -203  -18.87%   x 1.23
num::int_log::u32_log10_random_small   1,145        874                  -271  -23.67%   x 1.31
num::int_log::u64_log10_predictable    4,005        3,171                -834  -20.82%   x 1.26
num::int_log::u64_log10_random         1,247        1,021                -226  -18.12%   x 1.22
num::int_log::u64_log10_random_small   1,265        921                  -344  -27.19%   x 1.37
num::int_log::u128_log10_predictable   39,667       39,579                -88   -0.22%   x 1.00
num::int_log::u128_log10_random        6,456        6,696                 240    3.72%   x 0.96
num::int_log::u128_log10_random_small  4,108        3,903                -205   -4.99%   x 1.05
```

Benchmark on an M1 Mac Mini:

```
name                                   old ns/iter  new ns/iter  diff ns/iter   diff %  speedup
num::int_log::u8_log10_predictable     143          130                   -13   -9.09%   x 1.10
num::int_log::u8_log10_random          375          325                   -50  -13.33%   x 1.15
num::int_log::u8_log10_random_small    376          325                   -51  -13.56%   x 1.16
num::int_log::u16_log10_predictable    500          322                  -178  -35.60%   x 1.55
num::int_log::u16_log10_random         794          405                  -389  -48.99%   x 1.96
num::int_log::u16_log10_random_small   1,035        405                  -630  -60.87%   x 2.56
num::int_log::u32_log10_predictable    1,144        894                  -250  -21.85%   x 1.28
num::int_log::u32_log10_random         832          786                   -46   -5.53%   x 1.06
num::int_log::u32_log10_random_small   832          787                   -45   -5.41%   x 1.06
num::int_log::u64_log10_predictable    2,681        2,057                -624  -23.27%   x 1.30
num::int_log::u64_log10_random         1,015        806                  -209  -20.59%   x 1.26
num::int_log::u64_log10_random_small   1,004        795                  -209  -20.82%   x 1.26
num::int_log::u128_log10_predictable   56,825       56,526               -299   -0.53%   x 1.01
num::int_log::u128_log10_random        9,056        8,861                -195   -2.15%   x 1.02
num::int_log::u128_log10_random_small  1,528        1,527                  -1   -0.07%   x 1.00
```

The 128 bit case remains ridiculously slow because llvm fails to optimize division by a constant 128-bit value to multiplications. This could be worked around but it seems preferable to fix this in llvm.

From u32 up, table lookup (like suggested [here](https://github.com/rust-lang/rust/issues/70887#issuecomment-881099813)) is still faster, but requires a hardware `leading_zeros` to be viable, and might clog up the cache.
2021-10-12 03:18:54 +00:00
Josh Triplett
3ece63b64e Temporarily rename int_roundings functions to avoid conflicts
These functions are unstable, but because they're inherent they still
introduce conflicts with stable trait functions in crates. Temporarily
rename them to fix these conflicts, until we can resolve those conflicts
in a better way.
2021-09-22 13:56:01 -07:00
Falk Hüffner
d53c483502 Speed up integer log10.
This is achieved with a branchless bit-twiddling implementation of the
case x < 100_000, and using this as building block.

Benchmark on an Intel i7-8700K (Coffee Lake):

name                                   old ns/iter  new ns/iter  diff ns/iter   diff %  speedup
num::int_log::u8_log10_predictable     165          169                     4    2.42%   x 0.98
num::int_log::u8_log10_random          438          423                   -15   -3.42%   x 1.04
num::int_log::u8_log10_random_small    438          423                   -15   -3.42%   x 1.04
num::int_log::u16_log10_predictable    633          417                  -216  -34.12%   x 1.52
num::int_log::u16_log10_random         908          471                  -437  -48.13%   x 1.93
num::int_log::u16_log10_random_small   945          471                  -474  -50.16%   x 2.01
num::int_log::u32_log10_predictable    1,496        1,340                -156  -10.43%   x 1.12
num::int_log::u32_log10_random         1,076        873                  -203  -18.87%   x 1.23
num::int_log::u32_log10_random_small   1,145        874                  -271  -23.67%   x 1.31
num::int_log::u64_log10_predictable    4,005        3,171                -834  -20.82%   x 1.26
num::int_log::u64_log10_random         1,247        1,021                -226  -18.12%   x 1.22
num::int_log::u64_log10_random_small   1,265        921                  -344  -27.19%   x 1.37
num::int_log::u128_log10_predictable   39,667       39,579                -88   -0.22%   x 1.00
num::int_log::u128_log10_random        6,456        6,696                 240    3.72%   x 0.96
num::int_log::u128_log10_random_small  4,108        3,903                -205   -4.99%   x 1.05

Benchmark on an M1 Mac Mini:

name                                   old ns/iter  new ns/iter  diff ns/iter   diff %  speedup
num::int_log::u8_log10_predictable     143          130                   -13   -9.09%   x 1.10
num::int_log::u8_log10_random          375          325                   -50  -13.33%   x 1.15
num::int_log::u8_log10_random_small    376          325                   -51  -13.56%   x 1.16
num::int_log::u16_log10_predictable    500          322                  -178  -35.60%   x 1.55
num::int_log::u16_log10_random         794          405                  -389  -48.99%   x 1.96
num::int_log::u16_log10_random_small   1,035        405                  -630  -60.87%   x 2.56
num::int_log::u32_log10_predictable    1,144        894                  -250  -21.85%   x 1.28
num::int_log::u32_log10_random         832          786                   -46   -5.53%   x 1.06
num::int_log::u32_log10_random_small   832          787                   -45   -5.41%   x 1.06
num::int_log::u64_log10_predictable    2,681        2,057                -624  -23.27%   x 1.30
num::int_log::u64_log10_random         1,015        806                  -209  -20.59%   x 1.26
num::int_log::u64_log10_random_small   1,004        795                  -209  -20.82%   x 1.26
num::int_log::u128_log10_predictable   56,825       56,526               -299   -0.53%   x 1.01
num::int_log::u128_log10_random        9,056        8,861                -195   -2.15%   x 1.02
num::int_log::u128_log10_random_small  1,528        1,527                  -1   -0.07%   x 1.00

The 128 bit case remains ridiculously slow because llvm fails to optimize division by
a constant 128-bit value to multiplications. This could be worked around but it seems
preferable to fix this in llvm.

From u32 up, table lookup (like suggested here
https://github.com/rust-lang/rust/issues/70887#issuecomment-881099813) is still
faster, but requires a hardware leading_zero to be viable, and might clog up the
cache.
2021-09-09 18:14:47 +02:00
Falk Hüffner
d760c33183 Change return type for T::{log,log2,log10} to u32. The value is at
most 128, and this is consistent with using u32 for small values
elsewhere (e.g. BITS, count_ones, leading_zeros).
2021-09-05 17:09:21 +02:00
Jacob Pratt
727a4fc7e3
Implement #88581 2021-09-02 01:53:54 -04:00
Albin Hedman
c8bf5ed628
Add test for int to float 2021-08-07 19:03:34 +02:00
Albin Hedman
09928a9a20
Add tests 2021-08-07 19:03:33 +02:00
bors
f502bd3abd Auto merge of #86761 - Alexhuszagh:master, r=estebank
Update Rust Float-Parsing Algorithms to use the Eisel-Lemire algorithm.

# Summary

Rust, although it implements a correct float parser, has major performance issues in float parsing. Even for common floats, the performance can be 3-10x [slower](https://arxiv.org/pdf/2101.11408.pdf) than external libraries such as [lexical](https://github.com/Alexhuszagh/rust-lexical) and [fast-float-rust](https://github.com/aldanor/fast-float-rust).

Recently, major advances in float-parsing algorithms have been developed by Daniel Lemire, along with others, and implement a fast, performant, and correct float parser, with speeds up to 1200 MiB/s on Apple's M1 architecture for the [canada](0e2b5d163d/data/canada.txt) dataset, 10x faster than Rust's 130 MiB/s.

In addition, [edge-cases](https://github.com/rust-lang/rust/issues/85234) in Rust's [dec2flt](868c702d0c/library/core/src/num/dec2flt) algorithm can lead to over a 1600x slowdown relative to efficient algorithms. This is due to the use of Clinger's correct, but slow [AlgorithmM and Bellepheron](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.4152&rep=rep1&type=pdf), which have been improved by faster big-integer algorithms and the Eisel-Lemire algorithm, respectively.

Finally, this algorithm provides substantial improvements in the number of floats the Rust core library can parse. Denormal floats with a large number of digits cannot be parsed, due to use of the `Big32x40`, which simply does not have enough digits to round a float correctly. Using a custom decimal class, with much simpler logic, we can parse all valid decimal strings of any digit count.

```rust
// Issue in Rust's dec2fly.
"2.47032822920623272088284396434110686182e-324".parse::<f64>();   // Err(ParseFloatError { kind: Invalid })
```

# Solution

This pull request implements the Eisel-Lemire algorithm, modified from [fast-float-rust](https://github.com/aldanor/fast-float-rust) (which is licensed under Apache 2.0/MIT), along with numerous modifications to make it more amenable to inclusion in the Rust core library. The following describes both features in fast-float-rust and improvements in fast-float-rust for inclusion in core.

**Documentation**

Extensive documentation has been added to ensure the code base may be maintained by others, which explains the algorithms as well as various associated constants and routines. For example, two seemingly magical constants include documentation to describe how they were derived as follows:

```rust
    // Round-to-even only happens for negative values of q
    // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
    // the 32-bitcase.
    //
    // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
    // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
    // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
    //
    // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
    // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
    // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
    // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
    // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
    //
    // Thus we have that we only need to round ties to even when
    // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
    // (in the 32-bit case). In both cases,the power of five(5^|q|)
    // fits in a 64-bit word.
    const MIN_EXPONENT_ROUND_TO_EVEN: i32;
    const MAX_EXPONENT_ROUND_TO_EVEN: i32;
```

This ensures maintainability of the code base.

**Improvements for Disguised Fast-Path Cases**

The fast path in float parsing algorithms attempts to use native, machine floats to represent both the significant digits and the exponent, which is only possible if both can be exactly represented without rounding. In practice, this means that the significant digits must be 53-bits or less and the then exponent must be in the range `[-22, 22]` (for an f64). This is similar to the existing dec2flt implementation.

However, disguised fast-path cases exist, where there are few significant digits and an exponent above the valid range, such as `1.23e25`. In this case, powers-of-10 may be shifted from the exponent to the significant digits, discussed at length in https://github.com/rust-lang/rust/issues/85198.

**Digit Parsing Improvements**

Typically, integers are parsed from string 1-at-a-time, requiring unnecessary multiplications which can slow down parsing. An approach to parse 8 digits at a time using only 3 multiplications is described in length [here](https://johnnylee-sde.github.io/Fast-numeric-string-to-int/). This leads to significant performance improvements, and is implemented for both big and little-endian systems.

**Unsafe Changes**

Relative to fast-float-rust, this library makes less use of unsafe functionality and clearly documents it. This includes the refactoring and documentation of numerous unsafe methods undesirably marked as safe. The original code would look something like this, which is deceptively marked as safe for unsafe functionality.

```rust
impl AsciiStr {
    #[inline]
    pub fn step_by(&mut self, n: usize) -> &mut Self {
        unsafe { self.ptr = self.ptr.add(n) };
        self
    }
}

...

#[inline]
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
    // the first character is 'e'/'E' and scientific mode is enabled
    let start = *s;
    s.step();
    ...
}
```

The new code clearly documents safety concerns, and does not mark unsafe functionality as safe, leading to better safety guarantees.

```rust
impl AsciiStr {
    /// Advance the view by n, advancing it in-place to (n..).
    pub unsafe fn step_by(&mut self, n: usize) -> &mut Self {
        // SAFETY: same as step_by, safe as long n is less than the buffer length
        self.ptr = unsafe { self.ptr.add(n) };
        self
    }
}

...

/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> i64 {
    let start = *s;
    // SAFETY: the first character is 'e'/'E' and scientific mode is enabled
    unsafe {
        s.step();
    }
    ...
}
```

This allows us to trivially demonstrate the new implementation of dec2flt is safe.

**Inline Annotations Have Been Removed**

In the previous implementation of dec2flt, inline annotations exist practically nowhere in the entire module. Therefore, these annotations have been removed, which mostly does not impact [performance](https://github.com/aldanor/fast-float-rust/issues/15#issuecomment-864485157).

**Fixed Correctness Tests**

Numerous compile errors in `src/etc/test-float-parse` were present, due to deprecation of `time.clock()`, as well as the crate dependencies with `rand`. The tests have therefore been reworked as a [crate](https://github.com/Alexhuszagh/rust/tree/master/src/etc/test-float-parse), and any errors in `runtests.py` have been patched.

**Undefined Behavior**

An implementation of `check_len` which relied on undefined behavior (in fast-float-rust) has been refactored, to ensure that the behavior is well-defined. The original code is as follows:

```rust
    #[inline]
    pub fn check_len(&self, n: usize) -> bool {
        unsafe { self.ptr.add(n) <= self.end }
    }
```

And the new implementation is as follows:

```rust
    /// Check if the slice at least `n` length.
    fn check_len(&self, n: usize) -> bool {
        n <= self.as_ref().len()
    }
```

Note that this has since been fixed in [fast-float-rust](https://github.com/aldanor/fast-float-rust/pull/29).

**Inferring Binary Exponents**

Rather than explicitly store binary exponents, this new implementation infers them from the decimal exponent, reducing the amount of static storage required. This removes the requirement to store [611 i16s](868c702d0c/library/core/src/num/dec2flt/table.rs (L8)).

# Code Size

The code size, for all optimizations, does not considerably change relative to before for stripped builds, however it is **significantly** smaller prior to stripping the resulting binaries. These binary sizes were calculated on x86_64-unknown-linux-gnu.

**new**

Using rustc version 1.55.0-dev.

opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|400k|300K
1|396k|292K
2|392k|292K
3|392k|296K
s|396k|292K
z|396k|292K

**old**

Using rustc version 1.53.0-nightly.

opt-level|size|size(stripped)
|:-:|:-:|:-:|
0|3.2M|304K
1|3.2M|292K
2|3.1M|284K
3|3.1M|284K
s|3.1M|284K
z|3.1M|284K

# Correctness

The dec2flt implementation passes all of Rust's unittests and comprehensive float parsing tests, along with numerous other tests such as Nigel Toa's comprehensive float [tests](https://github.com/nigeltao/parse-number-fxx-test-data) and Hrvoje Abraham  [strtod_tests](https://github.com/ahrvoje/numerics/blob/master/strtod/strtod_tests.toml). Therefore, it is unlikely that this algorithm will incorrectly round parsed floats.

# Issues Addressed

This will fix and close the following issues:

- resolves #85198
- resolves #85214
- resolves #85234
- fixes #31407
- fixes #31109
- fixes #53015
- resolves #68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
2021-07-17 12:56:22 +00:00
Alex Huszagh
8752b40369 Changed dec2flt to use the Eisel-Lemire algorithm.
Implementation is based off fast-float-rust, with a few notable changes.

- Some unsafe methods have been removed.
- Safe methods with inherently unsafe functionality have been removed.
- All unsafe functionality is documented and provably safe.
- Extensive documentation has been added for simpler maintenance.
- Inline annotations on internal routines has been removed.
- Fixed Python errors in src/etc/test-float-parse/runtests.py.
- Updated test-float-parse to be a library, to avoid missing rand dependency.
- Added regression tests for #31109 and #31407 in core tests.
- Added regression tests for #31109 and #31407 in ui tests.
- Use the existing slice primitive to simplify shared dec2flt methods
- Remove Miri ignores from dec2flt, due to faster parsing times.

- resolves #85198
- resolves #85214
- resolves #85234
- fixes #31407
- fixes #31109
- fixes #53015
- resolves #68396
- closes https://github.com/aldanor/fast-float-rust/issues/15
2021-07-17 00:30:34 -05:00
Trevor Spiteri
b0f98c60a6 test integer log10 values close to all powers of 10 2021-07-07 14:07:32 +02:00
Yuki Okushi
9bbc470e97
Rollup merge of #80918 - yoshuawuyts:int-log2, r=m-ou-se
Add Integer::log variants

_This is another attempt at landing https://github.com/rust-lang/rust/pull/70835, which was approved by the libs team but failed on Android tests through Bors. The text copied here is from the original issue. The only change made so far is the addition of non-`checked_` variants of the log methods._

_Tracking issue: #70887_

---

This implements `{log,log2,log10}` methods for all integer types. The implementation was provided by `@substack` for use in the stdlib.

_Note: I'm not big on math, so this PR is a best effort written with limited knowledge. It's likely I'll be getting things wrong, but happy to learn and correct. Please bare with me._

## Motivation
Calculating the logarithm of a number is a generally useful operation. Currently the stdlib only provides implementations for floats, which means that if we want to calculate the logarithm for an integer we have to cast it to a float and then back to an int.

> would be nice if there was an integer log2 instead of having to either use the f32 version or leading_zeros() which i have to verify the results of every time to be sure

_— [`@substack,` 2020-03-08](https://twitter.com/substack/status/1236445105197727744)_

At higher numbers converting from an integer to a float we also risk overflows. This means that Rust currently only provides log operations for a limited set of integers.

The process of doing log operations by converting between floats and integers is also prone to rounding errors. In the following example we're trying to calculate `base10` for an integer. We might try and calculate the `base2` for the values, and attempt [a base swap](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules) to arrive at `base10`. However because we're performing intermediate rounding we arrive at the wrong result:

```rust
// log10(900) = ~2.95 = 2
dbg!(900f32.log10() as u64);

// log base change rule: logb(x) = logc(x) / logc(b)
// log2(900) / log2(10) = 9/3 = 3
dbg!((900f32.log2() as u64) / (10f32.log2() as u64));
```
_[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)_

This is somewhat nuanced as a lot of the time it'll work well, but in real world code this could lead to some hard to track bugs. By providing correct log implementations directly on integers we can help prevent errors around this.

## Implementation notes

I checked whether LLVM intrinsics existed before implementing this, and none exist yet. ~~Also I couldn't really find a better way to write the `ilog` function. One option would be to make it a private method on the number, but I didn't see any precedent for that. I also didn't know where to best place the tests, so I added them to the bottom of the file. Even though they might seem like quite a lot they take no time to execute.~~

## References

- [Log rules](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules)
- [Rounding error playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)
- [substack's tweet asking about integer log2 in the stdlib](https://twitter.com/substack/status/1236445105197727744)
- [Integer Logarithm, A. Jaffer 2008](https://people.csail.mit.edu/jaffer/III/ilog.pdf)
2021-07-07 12:17:32 +09:00
Yoshua Wuyts
9f579968cd Add Integer::{log,log2,log10} variants 2021-06-25 18:52:46 +02:00
Gary Guo
37647d1733 Move flt2dec::{Formatted, Part} to dedicated module
They are used by integer formatting as well and is not exclusive to float.
2021-06-06 02:54:51 +01:00
Jubilee Young
74db93ed2d Preserve signed zero on roundtrip
This commit removes the previous mechanism of differentiating
between "Debug" and "Display" formattings for the sign of -0 so as
to comply with the IEEE 754 standard's requirements on external
character sequences preserving various attributes of a floating
point representation.

In addition, numerous tests are fixed.
2021-03-22 17:02:09 -07:00
Jubilee Young
fc9b234928 Add IEEE754 tests 2021-03-22 17:02:06 -07:00
Smitty
e10555c658 Re-enable all num tests on WASM
This was partially done by #47365, but a few tests
were missed in that PR.
2021-01-15 16:58:44 -05:00
Philippe Laflamme
64d695b753
Adds tests to ensure some base op traits exist.
These tests invoke the various op traits using all accepted types they
are implemented for as well as for references to those types.

This fixes #49660 and ensures the following implementations exist:

* `Add`, `Sub`, `Mul`, `Div`, `Rem`
  * `T op T`, `T op &T`, `&T op T` and `&T op &T`
  * for all integer and floating point types
* `AddAssign`, `SubAssign`, `MulAssign`, `DivAssign`, `RemAssign`
  * `&mut T op T` and `&mut T op &T`
  * for all integer and floating point types
* `Neg`
  * `op T` and `op &T`
  * for all signed integer and floating point types
* `Not`
  * `op T` and `op &T`
  * for `bool`
* `BitAnd`, `BitOr`, `BitXor`
  * `T op T`, `T op &T`, `&T op T` and `&T op &T`
  * for all integer types and bool
* `BitAndAssign`, `BitOrAssign`, `BitXorAssign`
  * `&mut T op T` and `&mut T op &T`
  * for all integer types and bool
* `Shl`, `Shr`
  * `L op R`, `L op &R`, `&L op R` and `&L op &R`
  * for all pairs of integer types
* `ShlAssign`, `ShrAssign`
  * `&mut L op R`, `&mut L op &R`
  * for all pairs of integer types
2021-01-13 23:14:00 -05:00