Due to the std/alloc split, it is not possible to make
`alloc::collections::TryReserveError::AllocError` non-exhaustive without
having an unstable, doc-hidden method to construct (which negates the
benefits from `#[non_exhaustive]`.
Rollup of 11 pull requests
Successful merges:
- #85054 (Revert SGX inline asm syntax)
- #85182 (Move `available_concurrency` implementation to `sys`)
- #86037 (Add `io::Cursor::{remaining, remaining_slice, is_empty}`)
- #86114 (Reopen#79692 (Format symbols under shared frames))
- #86297 (Allow to pass arguments to rustdoc-gui tool)
- #86334 (Resolve type aliases to the type they point to in intra-doc links)
- #86367 (Fix comment about rustc_inherit_overflow_checks in abs().)
- #86381 (Add regression test for issue #39161)
- #86387 (Remove `#[allow(unused_lifetimes)]` which is now unnecessary)
- #86398 (Add regression test for issue #54685)
- #86493 (Say "this enum variant takes"/"this struct takes" instead of "this function takes")
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add `io::Cursor::{remaining, remaining_slice, is_empty}`
Tracking issue: #86369
I came across an inconvenience when answering the following [Stack Overflow](https://stackoverflow.com/questions/67831170) question.
To get the remaining slice you have to call `buff.fill_buf().unwrap()`. Which in my opinion doesn't really tell you what is returned (in the context of Cursor). To improve readability and convenience when using Cursor i propose adding the method `remaining`.
The next thing i found inconvenient (unnecessary long) was detecting if the cursor reached the end. There are a few ways this can be achieved right now:
- `buff.fill_buf().unwrap().is_empty()`
- `buff.position() >= buff.get_ref().len()`
- `buff.bytes().next().is_none()`
Which all seem a bit unintuitive, hidden in trait documentations or just a bit long for such a simple task.
Therefor i propose another method called `is_empty`, maybe with another name, since this one may leave room for interpretation on what really is empty (the underlying slice, the remaining slice or maybe the position).
Since it seemed easier to create this PR instead of an RFC i did that, if an RFC is wanted, i can close this PR and write an RFC first.
Move `available_concurrency` implementation to `sys`
This splits out the platform-specific implementation of `available_concurrency` to the corresponding platforms under `sys`. No changes are made to the implementation.
Tidy didn't lint against this code being originally added outside of `sys` because of a bug (see #84677), this PR also reverts the exclusion that was introduced in that bugfix.
Tracking issue of `available_concurrency`: #74479
Add MIR pass to lower call to `core::slice::len` into `Len` operand
During some larger experiment with range analysis I've found that code like `let l = slice.len()` produces different MIR then one found in bound checks. This optimization pass replaces terminators that are calls to `core::slice::len` with just a MIR operand and Goto terminator.
It uses some heuristics to remove the outer borrow that is made to call `core::slice::len`, but I assume it can be eliminated, just didn't find how.
Would like to express my gratitude to `@oli-obk` who helped me a lot on Zullip
Move `OsStringExt` and `OsStrExt` to `std::os`
Moves the `OsStringExt` and `OsStrExt` traits and implementations from `sys_common` to `os`. `sys_common` is for abstractions over `sys` and shouldn't really contain publicly exported items.
This does introduce some duplication: the traits and implementations are now duplicated in `unix`, `wasi`, `hermit`, and `sgx`. However, I would argue that this duplication is no different to how something like `MetadataExt` is duplicated in `linux`, `vxworkx`, `redox`, `solaris` etc. The duplication also matches the fact that the traits on different platforms are technically distinct types: any platform is free to add it's own extra methods to the extension trait.
Change entry point to 🛡️ against 💥💥-payloads
Guard against panic payloads panicking within entrypoints, where it is
UB to do so.
Note that there are a number of tradeoffs to consider. For instance, I
considered guarding against accidental panics inside the `rt::init` and
`rt::cleanup` code as well, as it is not all that obvious these may not
panic, but doing so would mean that we initialize certain thread-local
slots unconditionally, which has its own problems.
Fixes#86030
r? `@m-ou-se`
Guard against panic payloads panicking within entrypoints, where it is
UB to do so.
Note that there are a number of implementation approaches to consider.
Some simpler, some more complicated. This particular solution is nice in
that it also guards against accidental implementation issues in
various pieces of runtime code, something we cannot prevent statically
right now.
Fixes#86030
Add has_data_left() to BufRead
This is a continuation of #40747 and also addresses #40745. The problem with the previous PR was that it had "eof" in its method name. This PR uses a more descriptive method name, but I'm open to changing it.
Dump mingw-64's error codes into our source tree.
I have verified with these runes:
$ f=library/std/src/sys/windows/c/errors.rs
$ diff -ub <(git-cat-file blob HEAD~:$f | sort) <(cat $f | perl -pe 's/WSABASEERR \+ (\d+)/10000 + $1/e' |sort) |grep ^- |less
that this does not change any existing values.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
We're going to add many more of these.
This commit is pure code motion, plus the necessary administrivia, as
I have veried with the following runes:
$ git-diff HEAD~ | grep '^+' |sort >plus
$ git-diff HEAD~ | grep '^-' | perl -pe 's/^-/+/' |sort >min
$ diff -ub min plus |less
The output is precisely the expected `mod` and `use` directives.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
DWORD is a type alias for u32, so this makes no difference.
But this entry is anomalous and in my forthcoming commits I am going
to import many errors wholesale, and I spotted that my wholesale
import didn't match what was here.
CC: Chris Denton <christophersdenton@gmail.com>
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
use ErrorKind::*;
I don't feel confident enough about Windows things to reorder this
alphabetically
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Rely on libc for correct integer types in os/unix/net/ancillary.rs.
This PR is a small maintainability improvement. It simplifies `unix/net/ancillary.rs` in `std` by removing the `cfg_ifs` for casting to the correct integer type, and just rely on libc to define the struct correctly.
Specialize `io::Bytes::size_hint` for more types
Improve the result of `<io::Bytes as Iterator>::size_hint` for some readers. I did not manage to specialize `SizeHint` for `io::Cursor`
Side question: would it be interesting for `io::Read` to have an optional `size_hint` method ?
Linear interpolation
#71016 is a previous attempt at implementation that was closed by the author. I decided to reuse the feature request issue (#71015) as a tracking issue. A member of the rust-lang org will have to edit the original post to be formatted correctly as I am not the issue's original author.
The common name `lerp` is used because it is the term used by most code in a wide variety of contexts; it also happens to be the recently chosen name of the function that was added to C++20.
To ensure symmetry as a method, this breaks the usual ordering of the method from `lerp(a, b, t)` to `t.lerp(a, b)`. This makes the most sense to me personally, and there will definitely be discussion before stabilisation anyway.
Implementing lerp "correctly" is very dififcult even though it's a very common building-block used in all sorts of applications. A good prior reading is [this proposal](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0811r2.html#linear-interpolation) for the C++20 lerp which talks about the various guarantees, which I've simplified down to:
1. Exactness: `(0.0).lerp(start, end) == start` and `(1.0).lerp(start, end) == end`
2. Consistency: `anything.lerp(x, x) == x`
3. Monotonicity: once you go up don't go down
Fun story: the version provided in that proposal, from what I understand, isn't actually monotonic.
I messed around with a *lot* of different lerp implementations because I kind of got a bit obsessed and I ultimately landed on one that uses the fused `mul_add` instruction. Floating-point lerp lore is hard to come by, so, just trust me when I say that this ticks all the boxes. I'm only 90% certain that it's monotonic, but I'm sure that people who care deeply about this will be there to discuss before stabilisation.
The main reason for using `mul_add` is that, in general, it ticks more boxes with fewer branches to be "correct." Although it will be slower on architectures without the fused `mul_add`, that's becoming more and more rare and I have a feeling that most people who will find themselves needing `lerp` will also have an efficient `mul_add` instruction available.
Rename IoSlice(Mut)::advance to advance_slice and add IoSlice(Mut)::advance
Also changes the signature of `advance_slice` to accept a `&mut &mut [IoSlice]`, not returning anything. This will better match the `IoSlice::advance` function.
Updates https://github.com/rust-lang/rust/issues/62726.