The previous dependency calculation was based on an arbitrary set of asterisks
at an arbitrary depth, but using the recursive version should be much more
robust in figuring out what's dependent.
Closes#13118
This commit switches over the backtrace infrastructure from piggy-backing off
the RUST_LOG environment variable to using the RUST_BACKTRACE environment
variable (logging is now disabled in libstd).
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
Whenever a failure happens, if a program is run with
`RUST_LOG=std::rt::backtrace` a backtrace will be printed to the task's stderr
handle. Stack traces are uncondtionally printed on double-failure and
rtabort!().
This ended up having a nontrivial implementation, and here's some highlights of
it:
* We're bundling libbacktrace for everything but OSX and Windows
* We use libgcc_s and its libunwind apis to get a backtrace of instruction
pointers
* On OSX we use dladdr() to go from an instruction pointer to a symbol
* On unix that isn't OSX, we use libbacktrace to get symbols
* Windows, as usual, has an entirely separate implementation
Lots more fun details and comments can be found in the source itself.
Closes#10128
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
This converts it to be very similar to crates.mk, with a single list of
the documentation items creating all the necessary bits and pieces.
Changes include:
- rustdoc is used to render HTML & test standalone docs
- documentation building now obeys NO_REBUILD=1
- testing standalone docs now obeys NO_REBUILD=1
- L10N is slightly less broken (in particular, it shares dependencies
and code with the rest of the code)
- PDFs can be built for all documentation items, not just tutorial and
manual
- removes the obsolete & unused extract-tests.py script
- adjust the CSS for standalone docs to use the rustdoc syntax
highlighting
The compiler itself doesn't necessarily need any features of green threading
such as spawning tasks and lots of I/O, so libnative is slightly more
appropriate for rustc to use itself.
This should also help the rusti bot which is currently incompatible with libuv.
This trades an O(n) allocation + memcpy for a O(1) proc allocation (for
the destructor). Most users only need &[u8] anyway (all of the users in
the main repo), and so this offers large gains.
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
Two unfortunate allocations were wrapping a proc() in a proc() with
GreenTask::build_start_wrapper, and then boxing this proc in a ~proc() inside of
Context::new(). Both of these allocations were a direct result from two
conditions:
1. The Context::new() function has a nice api of taking a procedure argument to
start up a new context with. This inherently required an allocation by
build_start_wrapper because extra code needed to be run around the edges of a
user-provided proc() for a new task.
2. The initial bootstrap code only understood how to pass one argument to the
next function. By modifying the assembly and entry points to understand more
than one argument, more information is passed through in registers instead of
allocating a pointer-sized context.
This is sadly where I end up throwing mips under a bus because I have no idea
what's going on in the mips context switching code and don't know how to modify
it.
Closes#7767
cc #11389
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all options
stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the directory of
the crate file.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
- `extra::json` didn't make the cut, because of `extra::json` required
dep on `extra::TreeMap`. If/when `extra::TreeMap` moves out of `extra`,
then `extra::json` could move into `serialize`
- `libextra`, `libsyntax` and `librustc` depend on the newly created
`libserialize`
- The extensions to various `extra` types like `DList`, `RingBuf`, `TreeMap`
and `TreeSet` for `Encodable`/`Decodable` were moved into the respective
modules in `extra`
- There is some trickery, evident in `src/libextra/lib.rs` where a stub
of `extra::serialize` is set up (in `src/libextra/serialize.rs`) for
use in the stage0 build, where the snapshot rustc is still making
deriving for `Encodable` and `Decodable` point at extra. Big props to
@huonw for help working out the re-export solution for this
extra: inline extra::serialize stub
fix stuff clobbered in rebase + don't reexport serialize::serialize
no more globs in libserialize
syntax: fix import of libserialize traits
librustc: fix bad imports in encoder/decoder
add serialize dep to librustdoc
fix failing run-pass tests w/ serialize dep
adjust uuid dep
more rebase de-clobbering for libserialize
fixing tests, pushing libextra dep into cfg(test)
fix doc code in extra::json
adjust index.md links to serialize and uuid library
In line with the dissolution of libextra - #8784 - moves arena to its own library libarena.
Changes based on PR #11787. Updates .gitignore to ignore doc/arena.
This is hopefully the beginning of the long-awaited dissolution of libextra.
Using the newly created build infrastructure for building libraries, I decided
to move the first module out of libextra.
While not being a particularly meaty module in and of itself, the flate module
is required by rustc and additionally has a native C dependency. I was able to
very easily split out the C dependency from rustrt, update librustc, and
magically everything gets installed to the right locations and built
automatically.
This is meant to be a proof-of-concept commit to how easy it is to remove
modules from libextra now. I didn't put any effort into modernizing the
interface of libflate or updating it other than to remove the one glob import it
had.
Before this patch, if you wanted to add a crate to the build system you had to
change about 100 lines across 8 separate makefiles. This is highly error prone
and opaque to all but a few. This refactoring is targeted at consolidating this
effort so adding a new crate adds one line in one file in a way that everyone
can understand it.