This is needed to make progress on #10296 as the default bounds will no longer
include Send. I believe that this was the originally intended syntax for procs,
and it just hasn't been necessary up until now.
Move std::rand to a separate rand crate
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
Also, deprecates/removes `rand::rng` (this time using `#[deprecated]`), since it's too easy to accidentally use inside a loop, making things very slow (have to read randomness from the OS and seed the RNG each time.)
This is needed to make progress on #10296 as the default bounds will no longer
include Send. I believe that this was the originally intended syntax for procs,
and it just hasn't been necessary up until now.
This should be called far less than it is because it does expensive OS
interactions and seeding of the internal RNG, `task_rng` amortises this
cost. The main problem is the name is so short and suggestive.
The direct equivalent is `StdRng::new`, which does precisely the same
thing.
The deprecation will make migrating away from the function easier.
This replaces it with a manual "task rng" using XorShift and a crappy
seeding mechanism. Theoretically good enough for the purposes
though (unique for tests).
This functionality is not super-core and so doesn't need to be included
in std. It's possible that std may need rand (it does a little bit now,
for io::test) in which case the functionality required could be moved to
a secret hidden module and reexposed by librand.
Unfortunately, using #[deprecated] here is hard: there's too much to
mock to make it feasible, since we have to ensure that programs still
typecheck to reach the linting phase.
- remove `node.js` dep., it has no effect as of #12747 (1)
- switch between LaTeX compilers, some cleanups
- CSS: fixup the print stylesheet, refactor highlighting code (2)
(1): `prep.js` outputs its own HTML directives, which `pandoc` cannot recognize when converting the document into LaTeX (this is why the PDF docs have never been highlighted as of now).
Note that if we were to add the `.rust` class to snippets, we could probably use pandoc's native highlighting capatibilities i.e. Kate ([here is](http://adrientetar.github.io/rust-tuts/tutorial/tutorial.pdf) an example of that).
(2): the only real highlighting change is for lifetimes which are now brown instead of red, the rest is just refactor of twos shades of red that look the same.
Also I made numbers highlighting for src in rustdoc a tint more clear so that it is less bothering.
@alexcrichton, @huonw
Closes#9873. Closes#12788.
This is my first non-docs contribution to Rust, so please let me know what I can fix. I probably should've submitted this to the mailing list first for comments, but it didn't take too long to implement so I figured I'd just give it a shot.
These changes are modeled loosely on the [JsonNode API](http://jackson.codehaus.org/1.7.9/javadoc/org/codehaus/jackson/JsonNode.html) provided by the [Jackson JSON processor](http://jackson.codehaus.org/).
Many common use cases for parsing JSON involve pulling one or more fields out of an object, however deeply nested. At present, this requires writing a pyramid of match statements. The added methods in this PR aim to make this a more painless process.
**Edited to reflect final implementation**
Example JSON:
```json
{
"successful" : true,
"status" : 200,
"error" : null,
"content" : {
"vehicles" : [
{"make" : "Toyota", "model" : "Camry", "year" : 1997},
{"make" : "Honda", "model" : "Accord", "year" : 2003}
]
}
}
```
Accessing "successful":
```rust
let example_json : Json = from_str("...above json...").unwrap();
let was_successful: Option<bool> = example_json.find(&~"successful").and_then(|j| j.as_boolean());
```
Accessing "status":
```rust
let example_json : Json = from_str("...above json...").unwrap();
let status_code : Option<f64> = example_json.find(&~"status").and_then(|j| j.as_number());
```
Accessing "vehicles":
```rust
let example_json : Json = from_str("...above json...").unwrap();
let vehicle_list: Option<List> = example_json.search(&~"vehicles").and_then(|j| j.as_list());
```
Accessing "vehicles" with an explicit path:
```rust
let example_json : Json = from_str("...above json...").unwrap();
let vehicle_list: Option<List> = example_json.find_path(&[&~"content", &~"vehicles"]).and_then(|j| j.as_list());
```
Accessing "error", which might be null or a string:
```rust
let example_json : Json = from_str("...above json...").unwrap();
let error: Option<Json> = example_json.find(&~"error");
if error.is_null() { // This would be nicer as a match, I'm just illustrating the boolean test methods
println!("Error is null, everything's fine.");
} else if error.is_str(){
println!("Something went wrong: {}", error.as_string().unwrap());
}
```
Some notes:
* Macros would help to eliminate some of the repetitiveness of the implementation, but I couldn't use them due to #4621. (**Edit**: There is no longer repetitive impl. Methods were simplified to make them more composable.)
* Would it be better to name methods after the Json enum type (e.g. `get_string`) or the associated Rust built-in? (e.g. `get_str`)
* TreeMap requires its keys to be &~str. Because of this, all of the new methods required &~str for their parameters. I'm uncertain what the best approach to fixing this is: neither demanding an owned pointer nor allocating within the methods to appease TreeMap's find() seems desirable. If I were able to take &str, people could put together paths easily with `"foo.bar.baz".split('.').collect();` (**Edit**: Follow on investigation into making TreeMap able to search by Equiv would be worthwhile.)
* At the moment, the `find_<sometype>` methods all find the first match for the provided key and attempt to return that value if it's of the specified type. This makes sense to me, but it's possible that users would interpret a call to `find_boolean("successful")` as looking for the first "successful" item that was a boolean rather than looking for the first "successful" and returning None if it isn't boolean. (**Edit**: No longer relevant.)
I hope this is helpful. Any feedback is appreciated!
The `-g` flag does not take an argument anymore while the argument to `--debuginfo` becomes mandatory. This change makes it possible again to run the compiler like this:
`rustc -g ./file.rs`
This did not work before because `./file.rs` was misinterpreted as the argument to `-g`. In order to get limited debuginfo, one now has to use `--debuginfo=1`.
It is often convenient to have forms of weak linkage or other various types of
linkage. Sadly, just using these flavors of linkage are not compatible with
Rust's typesystem and how it considers some pointers to be non-null.
As a compromise, this commit adds support for weak linkage to external symbols,
but it requires that this is only placed on extern statics of type `*T`.
Codegen-wise, we get translations like:
```rust
// rust code
extern {
#[linkage = "extern_weak"]
static foo: *i32;
}
// generated IR
@foo = extern_weak global i32
@_some_internal_symbol = internal global *i32 @foo
```
All references to the rust value of `foo` then reference `_some_internal_symbol`
instead of the symbol `_foo` itself. This allows us to guarantee that the
address of `foo` will never be null while the value may sometimes be null.
An example was implemented in `std::rt::thread` to determine if
`__pthread_get_minstack()` is available at runtime, and a test is checked in to
use it for a static value as well. Function pointers a little odd because you
still need to transmute the pointer value to a function pointer, but it's
thankfully better than not having this capability at all.
Thanks to @bnoordhuis for the original patch, most of this work is still his!
Fixed some styling issues with trailing whitespace.
- Removed redundant functions.
- Renamed `get` to `find`
- Renamed `get_path` to `find_path`
- Renamed `find` to `search`
- Changed as_object and as_list to return Object and List
rather than the underlying implementation types
of TreeMap<~str,Json> and ~[Json]
- Refactored find_path to use a fold() instead of recursion
Formatting fixes.
Fixed spacing, deleted comment.
Added convenience methods and accompanying tests to the Json class.
Updated tests to expect less pointer indirection.
It is often convenient to have forms of weak linkage or other various types of
linkage. Sadly, just using these flavors of linkage are not compatible with
Rust's typesystem and how it considers some pointers to be non-null.
As a compromise, this commit adds support for weak linkage to external symbols,
but it requires that this is only placed on extern statics of type `*T`.
Codegen-wise, we get translations like:
// rust code
extern {
#[linkage = "extern_weak"]
static foo: *i32;
}
// generated IR
@foo = extern_weak global i32
@_some_internal_symbol = internal global *i32 @foo
All references to the rust value of `foo` then reference `_some_internal_symbol`
instead of the symbol `_foo` itself. This allows us to guarantee that the
address of `foo` will never be null while the value may sometimes be null.
An example was implemented in `std::rt::thread` to determine if
`__pthread_get_minstack()` is available at runtime, and a test is checked in to
use it for a static value as well. Function pointers a little odd because you
still need to transmute the pointer value to a function pointer, but it's
thankfully better than not having this capability at all.
In the "reverse-complement" loop, if there is an odd number of element,
we forget to complement the element in the middle. For example, if the
input is "ggg", the result before the fix is "CgC" instead of "CCC".
This is because of this bug that the official shootout says that the rust
version is in "Bad Output". This commit should fix this error.
Where ItemDecorator creates new items given a single item, ItemModifier
alters the tagged item in place. The expansion rules for this are a bit
weird, but I think are the most reasonable option available.
When an item is expanded, all ItemModifier attributes are stripped from
it and the item is folded through all ItemModifiers. At that point, the
process repeats until there are no ItemModifiers in the new item.
cc @huonw
Where ItemDecorator creates new items given a single item, ItemModifier
alters the tagged item in place. The expansion rules for this are a bit
weird, but I think are the most reasonable option available.
When an item is expanded, all ItemModifier attributes are stripped from
it and the item is folded through all ItemModifiers. At that point, the
process repeats until there are no ItemModifiers in the new item.
Work towards #9876.
Several minor things here:
* Fix the `need_ok` function in `configure`
* Install man pages with non-executable permissions
* Use the correct directory for man pages when installing (this was a recent regression)
* Put all distributables in a new `dist/` directory in the build directory (there are soon to be significantly more of these)
Finally, this also creates a new, more precise way to install and uninstall Rust's files, the `install.sh` script, and creates a build target (currently `dist-tar-bins`) that creates a binary tarball containing all the installable files, boilerplate and license docs, and `install.sh`.
This binary tarball is the lowest-common denominator way to install Rust on Unix. We'll use it as the default installer on Linux (OS X will use .pkg).
## How `install.sh` works
* First, the makefiles (`prepare.mk` and `dist.mk`) put all the stuff that needs to be installed in a new directory in `dist/`.
* Then it puts `install.sh` in that same directory and a list of all the files to install at `rustlib/manifest`.
* Then the directory can be packaged and distributed.
* When `install.sh` runs it does some sanity checking then copies everything in the manifest to the install prefix, then copies the manifest as well.
* When `install.sh` runs again in the future it first looks for the existing manifest at the install prefix, and if it exists deletes everything in it. This is how the core distribution is upgraded - cargo is responsible for the rest.
* `install.sh --uninstall` will uninstall Rust
## Future work:
* Modify `install.sh` to accept `--man-dir` etc
* Rewrite `install.mk` to delegate to `install.sh`
* Investigate how `install.sh` does or doesn't work with .pkg on Mac
* Modify `dist.mk` to create `.pkg` files for all hosts
* Possibly use [makeself](http://www.megastep.org/makeself/) to create self-extracting installers
* Modify dist-snap bots run on mac as well, uploading binary tarballs and .pkg files for the four combos of linux, mac, x86, and x86_64.
* Adjust build system to be able to augment versions with '-nightly'
* Adjust build system to name dist artifacts without version numbers e.g. `rust-nightly-...pkg`. This is so we don't leave a huge trail of old nightly binaries on S3 - they just get overwritten.
* Create new dist-nightly builder
* Give the build master a new cron job to push to dist-nightly every night
* Add docs to distributables
* Update README.md to reflect the new reality
* Modernize the website to promote new installers
Closes#1433. Implemented after suggestion by @cmr in #12323
This is slightly less flexible than the implementation in #12323 (binary and octal floats aren't supported, nor are underscores in the literal), but is cleaner in that it doesn't modify the core grammar, or require odd syntax for the number itself. The missing features could be added back with relatively little effort (the main awkwardness is parsing the string. Is there a good approach for this in the stdlib currently?)
- Repurposes `MoveData.assignee_ids` to mean only `=` but not `+=`, so
that borrowck effectively classifies all expressions into assignees,
uses or both.
- Removes two `span_err` in liveness analysis, which are now borrowck's
responsibilities.
Closes#12527.
CodeMap.span_to_* perform a lookup of a BytePos(sp.hi), which lands into the next filemap if the last byte of range denoted by Span is also the last byte of the filemap, which results in ICEs or incorrect error reports.
Example:
````
pub fn main() {
let mut num = 3;
let refe = &mut num;
*refe = 5;
println!("{}", num);
}````
(note the empty line in the beginning and the absence of newline at the end)
The above would have caused ICE when trying to report where "refe" borrow ends.
The above without an empty line in the beginning would have reported borrow end to be the first line.
Most probably, this is also responsible for (at least some occurrences of) issue #8256.
The issue is fixed by always adding a newline at the end of non-empty filemaps in case there isn't a new line there already.
CodeMap.span_to_* perform a lookup of a BytePos(sp.hi), which lands into the next filemap if the last byte of range denoted by Span is also the last byte of the filemap, which results in ICEs or incorrect error reports.
Example:
````
pub fn main() {
let mut num = 3;
let refe = &mut num;
*refe = 5;
println!("{}", num);
}````
(note the empty line in the beginning and the absence of newline at the end)
The above would have caused ICE when trying to report where "refe" borrow ends.
The above without an empty line in the beginning would have reported borrow end to be the first line.
Most probably, this is also responsible for (at least some occurrences of) issue #8256.
The issue is fixed by always adding a newline at the end of non-empty filemaps in case there isn't a new line there already.