This lets the C++ code in the rt handle the (slightly) tricky parts of
random number generation: e.g. error detection/handling, and using the
values of the `#define`d options to the various functions.
This provides 2 methods: .reseed() and ::from_seed that modify and
create respecitively.
Implement this trait for the RNGs in the stdlib for which this makes
sense.
The former reads from e.g. /dev/urandom, the latter just wraps any
std::rt::io::Reader into an interface that implements Rng.
This also adds Rng.fill_bytes for efficient implementations of the above
(reading 8 bytes at a time is inefficient when you can read 1000), and
removes the dependence on src/rt (i.e. rand_gen_seed) although this last
one requires implementing hand-seeding of the XorShiftRng used in the
scheduler on Linux/unixes, since OSRng relies on a scheduler existing to
be able to read from /dev/urandom.
This commit fixes all of the fallout of the previous commit which is an attempt
to refine privacy. There were a few unfortunate leaks which now must be plugged,
and the most horrible one is the current `shouldnt_be_public` module now inside
`std::rt`. I think that this either needs a slight reorganization of the
runtime, or otherwise it needs to just wait for the external users of these
modules to get replaced with their `rt` implementations.
Other fixes involve making things pub which should be pub, and otherwise
updating error messages that now reference privacy instead of referencing an
"unresolved name" (yay!).
Also, documentation & general clean-up:
- remove `gen_char_from`: better served by `sample` or `choose`.
- `gen_bytes` generalised to `gen_vec`.
- `gen_int_range`/`gen_uint_range` merged into `gen_integer_range` and
made to be properly uniformly distributed. Fixes#8644.
Minor adjustments to other functions.
The trait will keep the `Iterator` naming, but a more concise module
name makes using the free functions less verbose. The module will define
iterables in addition to iterators, as it deals with iteration in
general.
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
These aren't used for anything at the moment and cause some TLS hits
on some perf-critical code paths. Will need to put better thought into
it in the future.
Fixed a memory leak caused by the singleton idle callback failing to close correctly. The problem was that the close function requires running inside a callback in the event loop, but we were trying to close the idle watcher after the loop returned from run. The fix was to just call run again to process this callback. There is an additional tweak to move the initialization logic fully into bootstrap, so tasks that do not ever call run do not have problems destructing.
Instead of a furious storm of idle callbacks we just have one. This is a major performance gain - around 40% on my machine for the ping pong bench.
Also in this PR is a cleanup commit for the scheduler code. Was previously up as a separate PR, but bors load + imminent merge hell led me to roll them together. Was #8549.
Every time run_sched_once performs a 'scheduling action' it needs to guarantee
that it runs at least one more time, so enqueue another run_sched_once callback.
The primary reason it needs to do this is because not all async callbacks
are guaranteed to run, it's only guaranteed that *a* callback will run after
enqueing one - some may get dropped.
At the moment this means we wastefully create lots of callbacks to ensure that
there will *definitely* be a callback queued up to continue running the scheduler.
The logic really needs to be tightened up here.