libnative erroneously would attempt to fill the entire buffer in a call to
`read` before returning, when rather it should return immediately because
there's not guaranteed to be any data that will ever be received again.
Close#11328
libnative erroneously would attempt to fill the entire buffer in a call to
`read` before returning, when rather it should return immediately because
there's not guaranteed to be any data that will ever be received again.
Close#11328
This reverts commit f1b5f59287.
Using a private function of a library is a bad idea: several people (on
Linux) were meeting with linking errors because of it (different/older
versions of glibc).
This removes the feature where newtype structs can be dereferenced like pointers, and likewise where certain enums can be dereferenced (which I imagine nobody realized still existed). This ad-hoc behavior is to be replaced by a more general overloadable dereference trait in the future.
I've been nursing this patch for two months and think it's about rebased up to master.
@nikomatsakis this makes a bunch of your type checking code noticeably uglier.
If there is a lot of data in thread-local storage some implementations
of pthreads (e.g. glibc) fail if you don't request a stack large enough
-- by adjusting for the minimum size we guarantee that our stacks are
always large enough. Issue #6233.
Previously this was an `rtabort!`, indicating a runtime bug. Promote
this to a more intentional abort and print a (slightly) more
informative error message.
Can't test this sense our test suite can't handle an abort exit.
I consider this to close#910, and that we should open another issue about implementing less conservative semantics here.
After writing some benchmarks for ebml::reader::vuint_at() I noticed that LLVM doesn't seem to inline the from_be32 function even though it only does a call to the bswap32 intrinsic in the x86_64 case. Marking the functions with #[inline(always)] fixes that and seems to me a reasonable thing to do. I got the following measurements in my vuint_at() benchmarks:
- Before
test ebml::bench::vuint_at_A_aligned ... bench: 1075 ns/iter (+/- 58)
test ebml::bench::vuint_at_A_unaligned ... bench: 1073 ns/iter (+/- 5)
test ebml::bench::vuint_at_D_aligned ... bench: 1150 ns/iter (+/- 5)
test ebml::bench::vuint_at_D_unaligned ... bench: 1151 ns/iter (+/- 6)
- Inline from_be32
test ebml::bench::vuint_at_A_aligned ... bench: 769 ns/iter (+/- 9)
test ebml::bench::vuint_at_A_unaligned ... bench: 795 ns/iter (+/- 6)
test ebml::bench::vuint_at_D_aligned ... bench: 758 ns/iter (+/- 8)
test ebml::bench::vuint_at_D_unaligned ... bench: 759 ns/iter (+/- 8)
- Using vuint_at_slow()
test ebml::bench::vuint_at_A_aligned ... bench: 646 ns/iter (+/- 7)
test ebml::bench::vuint_at_A_unaligned ... bench: 645 ns/iter (+/- 3)
test ebml::bench::vuint_at_D_aligned ... bench: 907 ns/iter (+/- 4)
test ebml::bench::vuint_at_D_unaligned ... bench: 1085 ns/iter (+/- 16)
As expected inlining from_be32() gave a considerable speedup.
I also tried how the "slow" version fared against the optimized version and noticed that it's
actually a bit faster for small A class integers (using only two bytes) but slower for big D class integers (using four bytes)
If there is a lot of data in thread-local storage some implementations
of pthreads (e.g. glibc) fail if you don't request a stack large enough
-- by adjusting for the minimum size we guarantee that our stacks are
always large enough. Issue #6233.
These methods are sorely needed on readers and writers, and I believe that the
encoding story should be solved with composition. This commit adds back the
missed functions when reading/writing strings onto generic Readers/Writers.
These methods are sorely needed on readers and writers, and I believe that the
encoding story should be solved with composition. This commit adds back the
missed functions when reading/writing strings onto generic Readers/Writers.
Previously this was an rtabort!, indicating a runtime bug. Promote
this to a more intentional abort and print a (slightly) more
informative error message.
Can't test this sense our test suite can't handle an abort exit.
This patchset adds intrinsics similar to the to_[be|le][16|32|64] intrinsics but for going in the reverse direction, e.g. from big/little endian to host endian. Implementation wise they do exactly the same as the corresponding to_* functions but I think it anyway make sense to have them since using the to_* functions in the reverse direction is not entirely intuitive.
The first patch adds the intrinsics and the two following changes instances of bswap* to use the [to|from]_* intrinsics instead.
For libgreen, bookeeping should not be global but rather on a per-pool basis.
Inside libnative, it's known that there must be a global counter with a
mutex/cvar.
The benefit of taking this strategy is to remove this functionality from libstd
to allow fine-grained control of it through libnative/libgreen. Notably, helper
threads in libnative can manually decrement the global count so they don't count
towards the global count of threads. Also, the shutdown process of *all* sched
pools is now dependent on the number of tasks in the pool being 0 rather than
this only being a hardcoded solution for the initial sched pool in libgreen.
This involved adding a Local::try_take() method on the Local trait in order for
the channel wakeup to work inside of libgreen. The channel send was happening
from a SchedTask when there is no Task available in TLS, and now this is
possible to work (remote wakeups are always possible, just a little slower).
For libgreen, bookeeping should not be global but rather on a per-pool basis.
Inside libnative, it's known that there must be a global counter with a
mutex/cvar.
The benefit of taking this strategy is to remove this functionality from libstd
to allow fine-grained control of it through libnative/libgreen. Notably, helper
threads in libnative can manually decrement the global count so they don't count
towards the global count of threads. Also, the shutdown process of *all* sched
pools is now dependent on the number of tasks in the pool being 0 rather than
this only being a hardcoded solution for the initial sched pool in libgreen.
This involved adding a Local::try_take() method on the Local trait in order for
the channel wakeup to work inside of libgreen. The channel send was happening
from a SchedTask when there is no Task available in TLS, and now this is
possible to work (remote wakeups are always possible, just a little slower).