assert_unsafe_precondition cleanup
I moved the polymorphic `is_nonoverlapping` into the `Cell` function that uses it and renamed `intrinsics::is_nonoverlapping_mono` to just `intrinsics::is_nonoverlapping`.
We now also have some docs for `intrinsics::debug_assertions`.
r? RalfJung
core: add Duration constructors
Add more `Duration` constructors.
Tracking issue: #120301.
These match similar convenience constructors available on both `chrono::Duration` and `time::Duration`.
What's the best ordering for these with respect to the existing constructors?
Suggest less bug-prone construction of Duration in docs
std::time::Duration has a well-known quirk: Duration::as_nanos() returns u128 [1], but Duration::from_nanos() takes u64 [2]. So these methods cannot easily roundtrip [3]. It is not possible to simply accept u128 in from_nanos [4], because it requires breaking other API [5].
It seems to me that callers have basically only two options:
1. `Duration::from_nanos(d.as_nanos() as u64)`, which is the "obvious" and buggy approach.
2. `Duration::new(d.as_secs(), d.subsecs_nanos())`, which only becomes apparent after reading and digesting the entire Duration struct documentation.
I suggest that the documentation of `from_nanos` is changed to make option 2 more easily discoverable.
There are two major usecases for this:
- "Weird math" operations that should not be supported directly by `Duration`, like squaring.
- "Disconnected roundtrips", where the u128 value is passed through various other stack frames, and perhaps reconstructed into a Duration on a different machine.
In both cases, it seems like a good idea to not tempt people into thinking "Eh, u64 is good enough, what could possibly go wrong!". That's why I want to add a note that points out the similarly-easy and *safe* way to reconstruct a Duration.
[1] https://doc.rust-lang.org/stable/std/time/struct.Duration.html#method.as_nanos
[2] https://doc.rust-lang.org/stable/std/time/struct.Duration.html#method.from_nanos
[3] https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=fa6bab2b6b72f20c14b5243610ea1dde
[4] https://github.com/rust-lang/rust/issues/103332
[5] https://github.com/rust-lang/rust/issues/51107#issuecomment-392353166
Remove an unneeded helper from the tuple library code
Thanks to https://github.com/rust-lang/rust/pull/107022, this is just what `==` does, so we don't need the helper here anymore.
Clarify that atomic and regular integers can differ in alignment
The documentation for atomic integers says that they have the "same in-memory representation" as their underlying integers. This might be misconstrued as implying that they have the same layout. Therefore, clarify that atomic integers' alignment is equal to their size.
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
Improve `Option::inspect` docs
* Refer to the function as "a function" instead of "the provided closure" since it is not necessarily a closure.
* State that the original Option/Result is returned.
* Adjust the example for `Option::inspect` to use chaining.
core/time: avoid divisions in Duration::new
In our (decently large) code base, we use `SystemTime::UNIX_EPOCH.elapsed()` in a lot of places & often in a loop or in the hot path. On [Unix](https://github.com/rust-lang/rust/blob/1.75.0/library/std/src/sys/unix/time.rs#L153-L162) at least, it seems we do calculations before hand to ensure that nanos is within the valid range, yet `Duration::new()` still checks it again, using 2 divisions. It seems like adding a branch can make this function 33% faster on ARM64 in the cases where nanos is already in the valid range & seems to have no effect in the other case.
Benchmarks:
M1 Pro (14-inch base model):
```
duration/current/checked
time: [1.5945 ns 1.6167 ns 1.6407 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) high mild
3 (3.00%) high severe
duration/current/unchecked
time: [1.5941 ns 1.6051 ns 1.6179 ns]
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [1.1997 ns 1.2048 ns 1.2104 ns]
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
duration/branched/unchecked
time: [1.5881 ns 1.5957 ns 1.6039 ns]
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
```
EC2 c7gd.16xlarge (Graviton 3):
```
duration/current/checked
time: [2.7996 ns 2.8000 ns 2.8003 ns]
Found 5 outliers among 100 measurements (5.00%)
2 (2.00%) low severe
3 (3.00%) low mild
duration/current/unchecked
time: [2.9922 ns 2.9925 ns 2.9928 ns]
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
duration/branched/checked
time: [2.0830 ns 2.0843 ns 2.0857 ns]
Found 3 outliers among 100 measurements (3.00%)
1 (1.00%) low severe
1 (1.00%) low mild
1 (1.00%) high mild
duration/branched/unchecked
time: [2.9879 ns 2.9886 ns 2.9893 ns]
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) low severe
2 (2.00%) low mild
```
EC2 r7iz.16xlarge (Intel Xeon Scalable-based (Sapphire Rapids)):
```
duration/current/checked
time: [980.60 ps 980.79 ps 980.99 ps]
Found 10 outliers among 100 measurements (10.00%)
4 (4.00%) low severe
2 (2.00%) low mild
3 (3.00%) high mild
1 (1.00%) high severe
duration/current/unchecked
time: [979.53 ps 979.74 ps 979.96 ps]
Found 6 outliers among 100 measurements (6.00%)
2 (2.00%) low severe
1 (1.00%) low mild
2 (2.00%) high mild
1 (1.00%) high severe
duration/branched/checked
time: [938.72 ps 938.96 ps 939.22 ps]
Found 4 outliers among 100 measurements (4.00%)
1 (1.00%) low mild
1 (1.00%) high mild
2 (2.00%) high severe
duration/branched/unchecked
time: [1.0103 ns 1.0110 ns 1.0118 ns]
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) low mild
7 (7.00%) high mild
1 (1.00%) high severe
```
Bench code (ran using stable 1.75.0 & criterion latest 0.5.1):
I couldn't find any benches for `Duration` in this repo, so I just copied the relevant types & recreated it.
```rust
use criterion::{black_box, criterion_group, criterion_main, Criterion};
pub fn duration_bench(c: &mut Criterion) {
const NANOS_PER_SEC: u32 = 1_000_000_000;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
struct Nanoseconds(u32);
impl Default for Nanoseconds {
#[inline]
fn default() -> Self {
// SAFETY: 0 is within the valid range
unsafe { Nanoseconds(0) }
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Duration {
secs: u64,
nanos: Nanoseconds, // Always 0 <= nanos < NANOS_PER_SEC
}
impl Duration {
#[inline]
pub const fn new_current(secs: u64, nanos: u32) -> Duration {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
#[inline]
pub const fn new_branched(secs: u64, nanos: u32) -> Duration {
if nanos < NANOS_PER_SEC {
// SAFETY: nanos < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
} else {
let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) {
Some(secs) => secs,
None => panic!("overflow in Duration::new"),
};
let nanos = nanos % NANOS_PER_SEC;
// SAFETY: nanos % NANOS_PER_SEC < NANOS_PER_SEC, therefore nanos is within the valid range
Duration { secs, nanos: unsafe { Nanoseconds(nanos) } }
}
}
}
let mut group = c.benchmark_group("duration/current");
group.bench_function("checked", |b| {
b.iter(|| black_box(Duration::new_current(black_box(1_000_000_000), black_box(1_000_000))));
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_current(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
drop(group);
let mut group = c.benchmark_group("duration/branched");
group.bench_function("checked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(1_000_000)))
});
});
group.bench_function("unchecked", |b| {
b.iter(|| {
black_box(Duration::new_branched(black_box(1_000_000_000), black_box(2_000_000_000)))
});
});
}
criterion_group!(duration_benches, duration_bench);
criterion_main!(duration_benches);
```
The documentation for atomic integers says that they have the "same
in-memory representation" as their underlying integers. This might be
misconstrued as implying that they have the same layout. Therefore,
clarify that atomic integers' alignment is equal to their size.
Stop bailing out from compilation just because there were incoherent traits
fixes#120343
but also has a lot of "type annotations needed" fallout. Some are fixed in the second commit.
Make `NonZero` constructors generic.
This makes `NonZero` constructors generic, so that `NonZero::new` can be used without turbofish syntax.
Tracking issue: https://github.com/rust-lang/rust/issues/120257
~~I cannot figure out how to make this work with `const` traits. Not sure if I'm using it wrong or whether there's a bug:~~
```rust
101 | if n == T::ZERO {
| ^^^^^^^^^^^^ expected `host`, found `true`
|
= note: expected constant `host`
found constant `true`
```
r? `@dtolnay`
Reconstify `Add`
r? project-const-traits
I'm not happy with the ui test changes (or failures because I did not bless them and include the diffs in this PR). There is at least some bugs I need to look and try fix:
1. A third duplicated diagnostic when a consumer crate that does not have `effects` enabled has a trait selection error for an upstream const_trait trait. See tests/ui/ufcs/ufcs-qpath-self-mismatch.rs.
2. For some reason, making `Add` a const trait would stop us from suggesting `T: Add` when we try to add two `T`s without that bound. See tests/ui/suggestions/issue-97677.rs
revert stabilization of const_intrinsic_copy
`@rust-lang/wg-const-eval` I don't know what we were thinking when we approved https://github.com/rust-lang/rust/pull/97276... const-eval isn't supposed to be able to mutate anything yet! It's also near impossible to actually call `copy` in const on stable since `&mut` expressions are generally unstable. However, there's one exception...
```rust
static mut INT: i32 = unsafe {
let val = &mut [1]; // `&mut` on arrays is allowed in `static mut`
(val as *mut [i32; 1]).copy_from(&[42], 1);
val[0]
};
fn main() { unsafe {
dbg!(INT);
} }
```
Inside `static mut`, we accept some `&mut` since ~forever, to make `static mut FOO: &mut [T] = &mut [...];` work. We reject any attempt to actually write to that mutable reference though... except for the `copy` functions.
I think we should revert stabilizing these functions that take `*mut`, and then re-stabilize them together with `ptr.write` once mutable references are stable.
(This will likely fail on PowerPC until https://github.com/rust-lang/stdarch/pull/1497 lands. But we'll need a crater run first anyway.)