Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
Merge `CompilerError::CompilationFailed` and `CompilerError::ICE`.
`CompilerError` has `CompilationFailed` and `ICE` variants, which seems reasonable at first. But the way it identifies them is flawed:
- If compilation errors out, i.e. `RunCompiler::run` returns an `Err`, it uses `CompilationFailed`, which is reasonable.
- If compilation panics with `FatalError`, it catches the panic and uses `ICE`. This is sometimes right, because ICEs do cause `FatalError` panics, but sometimes wrong, because certain compiler errors also cause `FatalError` panics. (The compiler/rustdoc/clippy/whatever just catches the `FatalError` with `catch_with_exit_code` in `main`.)
In other words, certain non-ICE compilation failures get miscategorized as ICEs. It's not possible to reliably distinguish the two cases, so this commit merges them. It also renames the combined variant as just `Failed`, to better match the existing `Interrupted` and `Skipped` variants.
Here is an example of a non-ICE failure that causes a `FatalError` panic, from `tests/ui/recursion_limit/issue-105700.rs`:
```
#![recursion_limit="4"]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
//~^ERROR recursion limit reached while expanding
fn main() {{}}
```
r? ``@spastorino``
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
`CompilerError` has `CompilationFailed` and `ICE` variants, which seems
reasonable at first. But the way it identifies them is flawed:
- If compilation errors out, i.e. `RunCompiler::run` returns an `Err`,
it uses `CompilationFailed`, which is reasonable.
- If compilation panics with `FatalError`, it catches the panic and uses
`ICE`. This is sometimes right, because ICEs do cause `FatalError`
panics, but sometimes wrong, because certain compiler errors also
cause `FatalError` panics. (The compiler/rustdoc/clippy/whatever just
catches the `FatalError` with `catch_with_exit_code` in `main`.)
In other words, certain non-ICE compilation failures get miscategorized
as ICEs. It's not possible to reliably distinguish the two cases, so
this commit merges them. It also renames the combined variant as just
`Failed`, to better match the existing `Interrupted` and `Skipped`
variants.
Here is an example of a non-ICE failure that causes a `FatalError`
panic, from `tests/ui/recursion_limit/issue-105700.rs`:
```
#![recursion_limit="4"]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
#![invalid_attribute]
//~^ERROR recursion limit reached while expanding
fn main() {{}}
```
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
In #119972 the code should have become `E0123` rather than `0123`. This
fix doesn't affect the outcome because the proc macro errors out before
the type of the code is checked, but the fix makes the test's code
consistent with other similar code elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
The internal function was unsound, it could cause UB in rare cases where
the user inadvertly stored the returned object in a location that could
outlive the TyCtxt.
In order to make it safe, we now take a type context as an argument to
the internal fn, and we ensure that interned items are lifted using the
provided context.
Thus, this change ensures that the compiler can properly enforce
that the object does not outlive the type context it was lifted to.
I added `tcx` argument to `internal` to force 'tcx to be the same
lifetime as TyCtxt. The only other solution I could think is to change
this function to be `unsafe`.
Simplify the `run` macro to avoid sometimes unnecessary dependency
on `TyCtxt`. Instead, users can use the new internal method `tcx()`.
Additionally, extend the macro to accept closures that may capture
variables.
These are non-backward compatible changes, but they only affect
internal APIs which are provided today as helper functions until we
have a stable API to start the compiler.
Sandwich MIR optimizations between DSE.
This PR reorders MIR optimization passes in an attempt to increase their efficiency.
- Stop running CopyProp before GVN, it's useless as GVN will do the same thing anyway. Instead, we perform CopyProp at the end of the pipeline, to ensure we do not emit copy/move chains.
- Run DSE before GVN, as it increases the probability to have single-assignment locals.
- Run DSE after the final CopyProp to turn copies into moves.
r? `@ghost`
Remove ignore-stage1 that was added when changing error count msg
The bootstrap bump has happened, so the bootstrap compiler now contains the new diagnostic.
this was added in #118138
Avoid specialization in the metadata serialization code
With the exception of a perf-only specialization for byte slices and byte vectors.
This uses the same trick of introducing a new trait and having the Encodable and Decodable derives add a bound to it as used for TyEncoder/TyDecoder. The new code is clearer about which encoder/decoder uses which impl and it reduces the dependency of rustc on specialization, making it easier to remove support for specialization entirely or turn it into a construct that is only allowed for perf optimizations if we decide to do this.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
And make all hand-written `IntoDiagnostic` impls generic, by using
`DiagnosticBuilder::new(dcx, level, ...)` instead of e.g.
`dcx.struct_err(...)`.
This means the `create_*` functions are the source of the error level.
This change will let us remove `struct_diagnostic`.
Note: `#[rustc_lint_diagnostics]` is added to `DiagnosticBuilder::new`,
it's necessary to pass diagnostics tests now that it's used in
`into_diagnostic` functions.
This change introduces a new module to StableMIR named `abi` with
information from `rustc_target::abi` and `rustc_abi`, that allow users
to retrieve more low level information required to perform
bit-precise analysis.
The layout of a type can be retrieved via `Ty::layout`, and the instance
ABI can be retrieved via `Instance::fn_abi()`.
To properly handle errors while retrieve layout information, we had
to implement a few layout related traits.
- Remove `fn_sig()` from Instance.
- Change return value of `AssertMessage::description` to `Cow<>`.
- Add assert to instance `ty()`.
- Generalize uint / int type creation.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Add instance evaluation and methods to read an allocation in StableMIR
The instance evaluation is needed to handle intrinsics such as `type_id` and `type_name`.
Since we now use Allocation to represent all evaluated constants, provide a few methods to help process the data inside an allocation.
I've also started to add a structured way to get information about the compilation target machine. For now, I've only added information needed to process an allocation.
r? ``````@ouz-a``````
Fix is_foreign_item for StableMIR instance
Change the implementation of `Instance::is_foreign_item` to directly query the compiler for the instance `def_id` instead of incorrectly relying on the conversion to `CrateItem`. I also added a method to check if the instance has body, since the function already existed and it just wasn't exposed via public APIs. This makes it much cheaper for the user to check if the instance has body.
## Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the conversion from Instance to CrateItem to avoid the conversion if the instance didn't have a body available. This broke the `is_foreign_item`.
r? `@ouz-a`
Change the implementation of `Instance::is_foreign_item` to directly
query the compiler for the instance `def_id` instead of incorrectly
relying on the conversion to `CrateItem`.
Background:
- In pull https://github.com/rust-lang/rust/pull/118524, I fixed the
conversion from Instance to CrateItem to avoid the conversion if the
instance didn't have a body available. This broke the `is_foreign_item`.
Add ADT variant infomation to StableMIR and finish implementing TyKind::internal()
Introduce a `VariantDef` type and a mechanism to retrieve the definition from an `AdtDef`.
The `VariantDef` representation itself is just a combination of `AdtDef` and `VariantIdx`, which allow us to retrieve further information of a variant. I don't think we need to cache extra information for now, and we can translate on an on demand manner. I am leaving the fields public today due to https://github.com/rust-lang/project-stable-mir/issues/56, but they shouldn't. For this PR, I've only added a method to retrieve the variant name, and its fields. I also added an implementation of `RustcInternal` that allow users to retrieve more information using Rust internal APIs.
I have also finished the implementation of `RustcInternal` for `TyKind` which fixes https://github.com/rust-lang/project-stable-mir/issues/46.
## Motivation
Both of these changes are needed in order to properly interpret things like projections. For example,
- The variant definition is used to find out which variant we are downcasting to.
- Being able to create `Ty` from `TyKind` helps for example processing each stage of a projection, like the code in `place.ty()`.
Although, we would like to avoid crashes whenever
possible, and that's why I wanted to make this API fallible. It's
looking pretty hard to do proper validation.
I think many of our APIs will unfortunately depend on the user doing
the correct thing since at the MIR level we are working on,
we expect types to have been checked already.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Fixes error count display is different when there's only one error left
Supersedes #114759
### What did I do?
I did the small change in `rustc_errors` by hand. Then I did the other changes in `/compiler` by hand, those were just find replace on `*.rs` in the workspace. The changes in run-make are find replace for `run-make` in the workspace.
All other changes are blessed using `x test TEST --bless`. I blessed the tests that were blessed in #114759.
### how to review this nightmare
ping bors with an `r+`. You should check that my logic is sound and maybe quickly scroll through the diff, but fully verifying it seems fairly hard to impossible. I did my best to do this correctly.
Thank you `@adrianEffe` for bringing this up and your initial implementation.
cc `@flip1995,` you said you want to do a subtree sync asap
cc `@RalfJung` maybe you want to do a quick subtree sync afterwards as well for Miri
r? `@WaffleLapkin`
Add more APIs to retrieve information about types, and add more instance
resolution options.
Make `Instance::body()` return an Option<Body>, since not every instance
might have an available body. For example, foreign instances, virtual
instances, dependencies.
It's not clear to me (klinvill) that UserTypeProjections are produced
anymore with the removal of type ascriptions as per
https://github.com/rust-lang/rfcs/pull/3307. Furthermore, it's not clear
to me which variants of ProjectionElem could appear in such projections.
For these reasons, I'm reverting projections in UserTypeProjections to
simple strings until I can get more clarity on UserTypeProjections.
This commit includes richer projections for both Places and
UserTypeProjections. However, the tests only touch on Places. There are
also outstanding TODOs regarding how projections should be resolved to
produce Place types, and regarding if UserTypeProjections should just
contain ProjectionElem<(),()> objects as in MIR.
They've been deprecated for four years.
This commit includes the following changes.
- It eliminates the `rustc_plugin_impl` crate.
- It changes the language used for lints in
`compiler/rustc_driver_impl/src/lib.rs` and
`compiler/rustc_lint/src/context.rs`. External lints are now called
"loaded" lints, rather than "plugins" to avoid confusion with the old
plugins. This only has a tiny effect on the output of `-W help`.
- E0457 and E0498 are no longer used.
- E0463 is narrowed, now only relating to unfound crates, not plugins.
- The `plugin` feature was moved from "active" to "removed".
- It removes the entire plugins chapter from the unstable book.
- It removes quite a few tests, mostly all of those in
`tests/ui-fulldeps/plugin/`.
Closes#29597.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
The latest locals() method in stable MIR returns slices instead of vecs.
This commit also includes fixes to the existing tests that previously
referenced the private locals field.
This is particularly helpful for the ui tests, but also could be helpful
for Stable MIR users who just want all the locals without needing to
concatenate responses
We are not planning to support user generated constant in the
foreseeable future, so we are removing the Fold logic for now in
favor of the Instance::resolve logic.
The Instance::resolve was however incomplete, since we weren't handling
internalizing constants yet. Thus, I added that.
I decided to keep the Const fields private in case we decide to
translate them lazily.
Fix x86_64-gnu-llvm-15 CI tests
The CI script was broken - if there was a test failure in the first command chain (inside the `if`), CI would not report the failure.
It happened because there were two command chains separated by `&&` in the script, and since `set -e` doesn't exit for chained commands, if the first chain has failed, the script would happily continue forward, ignoring any test failures.
This could be fixed e.g. by adding some `|| exit 1` to the first chain, but I suppose that the `&&` chaining is unnecessary here anyway.
Reported [on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/test.20failure.20didn't.20stop.20CI).
Fixes: https://github.com/rust-lang/rust/issues/116867
Add stable Instance::body() and RustcInternal trait
The `Instance::body()` returns a monomorphized body.
For that, we had to implement visitor that monomorphize types and constants. We are also introducing the RustcInternal trait that will allow us to convert back from Stable to Internal.
Note that this trait is not yet visible for our users as it depends on Tables. We should probably add a new trait that can be exposed.
The tests here are very simple, and I'm planning on creating more exhaustive tests in the project-mir repo. But I was hoping to get some feedback here first.
r? ```@oli-obk```
The `Instance::body()` returns a monomorphized body.
For that, we had to implement visitor that monomorphize types and
constants. We are also introducing the RustcInternal trait that will
allow us to convert back from Stable to Internal.
Note that this trait is not yet visible for our users as it depends on
Tables. We should probably add a new trait that can be exposed.
Implement an internal lint encouraging use of `Span::eq_ctxt`
Adds a new Rustc internal lint that forbids use of `.ctxt() == .ctxt()` for spans, encouraging use of `.eq_ctxt()` instead (see https://github.com/rust-lang/rust/issues/49509).
Also fixed a few violations of the lint in the Rustc codebase (a fun additional way I could test my code). Edit: MIR opt folks I believe that's why you're CC'ed, just a heads up.
Two things I'm not sure about:
1. The way I chose to detect calls to `Span::ctxt`. I know adding diagnostic items to methods is generally discouraged, but after some searching and experimenting I couldn't find anything else that worked, so I went with it. That said, I'm happy to implement something different if there's a better way out there. (For what it's worth, if there is a better way, it might be worth documenting in the rustc-dev-guide, which I'm happy to take care of)
2. The error message for the lint. Ideally it would probably be good to give some context as to why the suggestion is made (e.g. `rustc::default_hash_types` tells the user that it's because of performance), but I don't have that context so I couldn't put it in the error message. Happy to iterate on the error message based on feedback during review.
r? ``@oli-obk``
Also add a few methods to instantiate instances and get an instance
definition.
We're still missing support to actually monomorphize the instance body.
Also consider call and yield as MIR SSA.
The SSA analysis on MIR only considered `Assign` statements as defining a SSA local.
This PR adds assignments as part of a `Call` or `Yield` terminator in that category.
This mainly allows to perform CopyProp on a call return place.
The only subtlety is in the dominance property: the assignment is only complete at the beginning of the target block.
Add a note to duplicate diagnostics
Helps explain why there may be a difference between manual testing and the test suite output and highlights them as something to potentially look into
For existing duplicate diagnostics I just blessed them other than a few files that had other `NOTE` annotations in
Improve invalid let expression handling
- Move all of the checks for valid let expression positions to parsing.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a valid location.
- Suppress some later errors and MIR construction for invalid let expressions.
- Fix a (drop) scope issue that was also responsible for #104172.
Fixes#104172Fixes#104868