This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
This commit is an implementation of [RFC 1513] which allows applications to
alter the behavior of panics at compile time. A new compiler flag, `-C panic`,
is added and accepts the values `unwind` or `panic`, with the default being
`unwind`. This model affects how code is generated for the local crate, skipping
generation of landing pads with `-C panic=abort`.
[RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md
Panic implementations are then provided by crates tagged with
`#![panic_runtime]` and lazily required by crates with
`#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic
runtime must match the final product, and if the panic strategy is not `abort`
then the entire DAG must have the same panic strategy.
With the `-C panic=abort` strategy, users can expect a stable method to disable
generation of landing pads, improving optimization in niche scenarios,
decreasing compile time, and decreasing output binary size. With the `-C
panic=unwind` strategy users can expect the existing ability to isolate failure
in Rust code from the outside world.
Organizationally, this commit dismantles the `sys_common::unwind` module in
favor of some bits moving part of it to `libpanic_unwind` and the rest into the
`panicking` module in libstd. The custom panic runtime support is pretty similar
to the custom allocator support with the only major difference being how the
panic runtime is injected (takes the `-C panic` flag into account).