Remove public doc(hidden) core::fmt::rt::v1
All the types used by format_arg!() are now lang items, so they are no longer required as publicly exported items.
Part of #99012
After this change, the `rt` module is private, and contains only three lang items used by format_args (`Placeholder`, `Alignment`, and `Count`): 441682cca9/library/core/src/fmt/rt.rs
Rollup of 4 pull requests
Successful merges:
- #108795 (Add support for the x86_64h-apple-darwin target)
- #110558 (Add Call terminator to SMIR)
- #110565 (linkchecker: running from a directory separate from the book)
- #110599 (Remove an unused `&[Ty]` <-> `&[GenericArg]`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
linkchecker: running from a directory separate from the book
Since rust-lang/cargo#11851, Cargo became a Cargo workspace of
itself. However, since `src/tools/linkchecker` cannot run inside
a workspace, Cargo needs a workaround that excludes `src/doc`
from workspace member probing.
To remove this hack, this PR adds a new optional argument `--path`
for `linkchecker.sh`. With this new argument, `linkchecker.sh` can
be run from a directory separate from the book. This also benefits
other projects using linkchecker, as they can run it under target
directory or any other directory, reducing leftover.
Add support for the x86_64h-apple-darwin target
See https://github.com/rust-lang/compiler-team/issues/599 for MCP.
r? compiler-team
CC `@BlackHoleFox` who recently overhauled the apple target code in `rustc-target`.
## Target Support Checklist
> - A tier 3 target must have a designated developer or developers (the "target
> maintainers") on record to be CCed when issues arise regarding the target.
> (The mechanism to track and CC such developers may evolve over time.)
I'm the designated developer.
> - Targets must use naming consistent with any existing targets; for instance, a
> target for the same CPU or OS as an existing Rust target should use the same
> name for that CPU or OS. Targets should normally use the same names and
> naming conventions as used elsewhere in the broader ecosystem beyond Rust
> (such as in other toolchains), unless they have a very good reason to
> diverge. Changing the name of a target can be highly disruptive, especially
> once the target reaches a higher tier, so getting the name right is important
> even for a tier 3 target.
This uses the same naming conventions used for the other macOS targets (`-apple-darwin`), combined with the convention used by LLVM for the `x86_64h` targets. LLVM's convention matches the architecture name used when invoking various tools such as `lipo`, `arch`, and (IMO) there's not really a compelling reason to depart from it.
> - Target names should not introduce undue confusion or ambiguity unless
> absolutely necessary to maintain ecosystem compatibility. For example, if
> the name of the target makes people extremely likely to form incorrect
> beliefs about what it targets, the name should be changed or augmented to
> disambiguate it.
I don't think this is especially likely, although I suppose someone could mistake it for `x86_64-apple-darwin`.
> - If possible, use only letters, numbers, dashes and underscores for the name.
> Periods (`.`) are known to cause issues in Cargo.
👍
> - Tier 3 targets may have unusual requirements to build or use, but must not
> create legal issues or impose onerous legal terms for the Rust project or for
> Rust developers or users.
> - The target must not introduce license incompatibilities.
It does not.
> - Anything added to the Rust repository must be under the standard Rust
> license (`MIT OR Apache-2.0`).
It is.
> - The target must not cause the Rust tools or libraries built for any other
> host (even when supporting cross-compilation to the target) to depend
> on any new dependency less permissive than the Rust licensing policy. This
> applies whether the dependency is a Rust crate that would require adding
> new license exceptions (as specified by the `tidy` tool in the
> rust-lang/rust repository), or whether the dependency is a native library
> or binary. In other words, the introduction of the target must not cause a
> user installing or running a version of Rust or the Rust tools to be
> subject to any new license requirements.
There are no new dependencies that don't also apply to `x86_64-apple-darwin`.
> - Compiling, linking, and emitting functional binaries, libraries, or other
> code for the target (whether hosted on the target itself or cross-compiling
> from another target) must not depend on proprietary (non-FOSS) libraries.
> Host tools built for the target itself may depend on the ordinary runtime
> libraries supplied by the platform and commonly used by other applications
> built for the target, but those libraries must not be required for code
> generation for the target; cross-compilation to the target must not require
> such libraries at all. For instance, `rustc` built for the target may
> depend on a common proprietary C runtime library or console output library,
> but must not depend on a proprietary code generation library or code
> optimization library. Rust's license permits such combinations, but the
> Rust project has no interest in maintaining such combinations within the
> scope of Rust itself, even at tier 3.
This has the same requirements as the other macOS targets (e.g. `x86_64-apple-darwin` and similar).
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous"
> legal/licensing terms include but are *not* limited to: non-disclosure
> requirements, non-compete requirements, contributor license agreements
> (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
> requirements conditional on the employer or employment of any particular
> Rust developers, revocable terms, any requirements that create liability
> for the Rust project or its developers or users, or any requirements that
> adversely affect the livelihood or prospects of the Rust project or its
> developers or users.
No change here.
> - Neither this policy nor any decisions made regarding targets shall create any
> binding agreement or estoppel by any party. If any member of an approving
> Rust team serves as one of the maintainers of a target, or has any legal or
> employment requirement (explicit or implicit) that might affect their
> decisions regarding a target, they must recuse themselves from any approval
> decisions regarding the target's tier status, though they may otherwise
> participate in discussions.
👍
> - This requirement does not prevent part or all of this policy from being
> cited in an explicit contract or work agreement (e.g. to implement or
> maintain support for a target). This requirement exists to ensure that a
> developer or team responsible for reviewing and approving a target does not
> face any legal threats or obligations that would prevent them from freely
> exercising their judgment in such approval, even if such judgment involves
> subjective matters or goes beyond the letter of these requirements.
👍
> - Tier 3 targets should attempt to implement as much of the standard libraries
> as possible and appropriate (`core` for most targets, `alloc` for targets
> that can support dynamic memory allocation, `std` for targets with an
> operating system or equivalent layer of system-provided functionality), but
> may leave some code unimplemented (either unavailable or stubbed out as
> appropriate), whether because the target makes it impossible to implement or
> challenging to implement. The authors of pull requests are not obligated to
> avoid calling any portions of the standard library on the basis of a tier 3
> target not implementing those portions.
The standard library tests seem to pass.
> - The target must provide documentation for the Rust community explaining how
> to build for the target, using cross-compilation if possible. If the target
> supports running binaries, or running tests (even if they do not pass), the
> documentation must explain how to run such binaries or tests for the target,
> using emulation if possible or dedicated hardware if necessary.
Documentation is provided.
> - Tier 3 targets must not impose burden on the authors of pull requests, or
> other developers in the community, to maintain the target. In particular,
> do not post comments (automated or manual) on a PR that derail or suggest a
> block on the PR based on a tier 3 target. Do not send automated messages or
> notifications (via any medium, including via ``@`)` to a PR author or others
> involved with a PR regarding a tier 3 target, unless they have opted into
> such messages.
Noted. This target is nearly identical to `x86_64-apple-darwin`, so this is
unlikely to cause issues anyway.
> - Backlinks such as those generated by the issue/PR tracker when linking to
> an issue or PR are not considered a violation of this policy, within
> reason. However, such messages (even on a separate repository) must not
> generate notifications to anyone involved with a PR who has not requested
> such notifications.
👍
> - Patches adding or updating tier 3 targets must not break any existing tier 2
> or tier 1 target, and must not knowingly break another tier 3 target without
> approval of either the compiler team or the maintainers of the other tier 3
> target.
> - In particular, this may come up when working on closely related targets,
> such as variations of the same architecture with different features. Avoid
> introducing unconditional uses of features that another variation of the
> target may not have; use conditional compilation or runtime detection, as
> appropriate, to let each target run code supported by that target.
👍
Add compare-output-lines-by-subset flag to compiletest
For [ferrocene](github.com/ferrocene/) we have some compiletests that check the output of the cli arguments to the compiler, including printing things like the target list (`--print target-list`). Unfortunately those tend to change quite often so when we sync we end up with some outputs we have to re-bless constantly, even though the exact output doesn't really matter.
We added a new compiletest flag to aid writing these kinds of tests: `compare-output-lines-by-subset`. It checks whether the lines of the expected output are a subset (or equal) to the lines of the actual output. If the expected output is empty it will fail unless the actual output is also empty. We opened this PR hoping the flag might be helpful for other tests in the future (especially if CLI-related tests are added in the future in the rust-lang/rust repo itself).
Allow overwriting the sysroot compile flag in compile tests
This was added in https://github.com/rust-lang/rust/pull/110478/files#diff-03a0567fa80ca04ed5a55f9ac5c711b4f84659be2d0ac4a984196d581c04f76b, unconditionally passing the `sysroot` flag to the compile test invocations. In our ferrocene fork we have a few tests that test the `sysroot` flag specifically which fail due to the flag being passed multiple times now.
We believe upstreaming this small change could be beneficial should the rust-lang/rust also want to test certain sysroot setups in the future.
fix out-of-date comment about rpath in bootstrap
in #64316 (1bec962f46), the `RUSTC_RPATH` enviroment variables had been removed , but the comments about the rpath still keep it
this PR fix it to avoid misunstanding
Add `indent_style = tab` for `Makefile`s to `.editorconfig`
Add `indent_style = tab` for `Makefile`s to `.editorconfig` as spaces don't work as indents in Makefiles.
Since rust-lang/cargo#11851, Cargo became a Cargo workspace of
itself. However, since `src/tools/linkchecker` cannot run inside
a workspace, Cargo needs a workaround that excludes `src/doc`
from workspace member probing.
To remove this hack, this PR adds a new optional argument `--path`
for `linkchecker.sh`. With this new argument, `linkchecker.sh` can
be run from a directory separate from the book. This also benefits
other projects using linkchecker, as they can run it under target
directory or any other directory, reducing leftover.
fix lint regression in `non_upper_case_globals`
Fixes#110573
The issue also exists for inherent associated types (where I copied my impl from). `EarlyContext` is more involved to fix in this way, so I'll leave it be for now (note it's unstable so that's not urgent).
r? `@compiler-errors`
`deny(unsafe_op_in_unsafe_fn)` in `rustc_data_structures`
r? `@Nilstrieb`
I couldn't bring myself to document the safety in big `unsafe` functions but ehh