Use undef for (some) partially-uninit constants
There needs to be some limit to avoid perf regressions on large arrays
with undef in each element (see comment in the code).
Fixes: #84565
Original PR: #83698
Depends on LLVM 14: #93577
Convert `newtype_index` to a proc macro
The `macro_rules!` implementation was becomng excessively complicated,
and difficult to modify. The new proc macro implementation should make
it much easier to add new features (e.g. skipping certain `#[derive]`s)
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
These links never worked, but the lint was suppressed due to the fact
that the span was pointing into the macro. With the new macro
implementation, the span now points directly to the doc comment in the
macro invocation, so it's no longer suppressed.
Always format to internal String in FmtPrinter
This avoids monomorphizing for different parameters, decreasing generic code
instantiated downstream from rustc_middle -- locally seeing 7% unoptimized LLVM IR
line wins on rustc_borrowck, for example.
We likely can't/shouldn't get rid of the Result-ness on most functions, though some
further cleanup avoiding fmt::Error where we now know it won't occur may be possible,
though somewhat painful -- fmt::Write is a pretty annoying API to work with in practice
when you're trying to use it infallibly.
Display for `ParamTy` and `ParamConst` is implemented in terms of print.
Using print avoids creating a new `FmtPrinter` just to display the
parameter name.
Rollup of 7 pull requests
Successful merges:
- #94169 (Fix several asm! related issues)
- #94178 (tidy: fire less "ignoring file length unneccessarily" warnings)
- #94179 (solarish current_exe using libc call directly)
- #94196 (compiletest: Print process output info with less whitespace)
- #94208 (Add the let else tests found missing in the stabilization report)
- #94237 (Do not suggest wrapping an item if it has ambiguous un-imported methods)
- #94246 (ScalarMaybeUninit is explicitly hexadecimal in its formatting)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
ScalarMaybeUninit is explicitly hexadecimal in its formatting
This makes `ScalarMaybeUninit` consistent with `Scalar` after the changes in https://github.com/rust-lang/rust/pull/94189.
r? ``@oli-obk``
Fix several asm! related issues
This is a combination of several fixes, each split into a separate commit. Splitting these into PRs is not practical since they conflict with each other.
Fixes#92378Fixes#85247
r? ``@nagisa``
CTFE engine: Scalar: expose size-generic to_(u)int methods
This matches the size-generic constructors `Scalar::from_(u)int`, and it would have helped in https://github.com/rust-lang/miri/pull/1978.
r? `@oli-obk`
safely `transmute<&List<Ty<'tcx>>, &List<GenericArg<'tcx>>>`
This PR has 3 relevant steps which are is split in distinct commits.
The first commit now interns `List<Ty<'tcx>>` and `List<GenericArg<'tcx>>` together, potentially reusing memory while allowing free conversions between these two using `List<Ty<'tcx>>::as_substs()` and `SubstsRef<'tcx>::try_as_type_list()`.
Using this, we then use `&'tcx List<Ty<'tcx>>` instead of a `SubstsRef<'tcx>` for tuple fields, simplifying a bunch of code.
Finally, as tuple fields and other generic arguments now use a different `TypeFoldable<'tcx>` impl, we optimize the impl for `List<Ty<'tcx>>` improving perf by slightly less than 1% in tuple heavy benchmarks.
This reverts commit a240ccd81c, reversing
changes made to 393fdc1048.
This PR was likely responsible for a relatively large regression in
dist-x86_64-msvc-alt builder times, from approximately 1.7 to 2.8 hours,
bringing that builder into the pool of the slowest builders we currently have.
This seems to be limited to the alt builder due to needing parallel-compiler
enabled, likely leading to slow LLVM compilation for some reason.
Improve `unused_unsafe` lint
I’m going to add some motivation and explanation below, particularly pointing the changes in behavior from this PR.
_Edit:_ Looking for existing issues, looks like this PR fixes#88260.
_Edit2:_ Now also contains code that closes#90776.
Main motivation: Fixes some issues with the current behavior. This PR is
more-or-less completely re-implementing the unused_unsafe lint; it’s also only
done in the MIR-version of the lint, the set of tests for the `-Zthir-unsafeck`
version no longer succeeds (and is thus disabled, see `lint-unused-unsafe.rs`).
On current nightly,
```rs
unsafe fn unsf() {}
fn inner_ignored() {
unsafe {
#[allow(unused_unsafe)]
unsafe {
unsf()
}
}
}
```
doesn’t create any warnings. This situation is not unrealistic to come by, the
inner `unsafe` block could e.g. come from a macro. Actually, this PR even
includes removal of one unused `unsafe` in the standard library that was missed
in a similar situation. (The inner `unsafe` coming from an external macro hides
the warning, too.)
The reason behind this problem is how the check currently works:
* While generating MIR, it already skips nested unsafe blocks (i.e. unsafe
nested in other unsafe) so that the inner one is always the one considered
unused
* To differentiate the cases of no unsafe operations inside the `unsafe` vs.
a surrounding `unsafe` block, there’s some ad-hoc magic walking up the HIR to
look for surrounding used `unsafe` blocks.
There’s a lot of problems with this approach besides the one presented above.
E.g. the MIR-building uses checks for `unsafe_op_in_unsafe_fn` lint to decide
early whether or not `unsafe` blocks in an `unsafe fn` are redundant and ought
to be removed.
```rs
unsafe fn granular_disallow_op_in_unsafe_fn() {
unsafe {
#[deny(unsafe_op_in_unsafe_fn)]
{
unsf();
}
}
}
```
```
error: call to unsafe function is unsafe and requires unsafe block (error E0133)
--> src/main.rs:13:13
|
13 | unsf();
| ^^^^^^ call to unsafe function
|
note: the lint level is defined here
--> src/main.rs:11:16
|
11 | #[deny(unsafe_op_in_unsafe_fn)]
| ^^^^^^^^^^^^^^^^^^^^^^
= note: consult the function's documentation for information on how to avoid undefined behavior
warning: unnecessary `unsafe` block
--> src/main.rs:10:5
|
9 | unsafe fn granular_disallow_op_in_unsafe_fn() {
| --------------------------------------------- because it's nested under this `unsafe` fn
10 | unsafe {
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
```
Here, the intermediate `unsafe` was ignored, even though it contains a unsafe
operation that is not allowed to happen in an `unsafe fn` without an additional `unsafe` block.
Also closures were problematic and the workaround/algorithms used on current
nightly didn’t work properly. (I skipped trying to fully understand what it was
supposed to do, because this PR uses a completely different approach.)
```rs
fn nested() {
unsafe {
unsafe { unsf() }
}
}
```
```
warning: unnecessary `unsafe` block
--> src/main.rs:10:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
```
vs
```rs
fn nested() {
let _ = || unsafe {
let _ = || unsafe { unsf() };
};
}
```
```
warning: unnecessary `unsafe` block
--> src/main.rs:9:16
|
9 | let _ = || unsafe {
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:10:20
|
10 | let _ = || unsafe { unsf() };
| ^^^^^^ unnecessary `unsafe` block
```
*note that this warning kind-of suggests that **both** unsafe blocks are redundant*
--------------------------------------------------------------------------------
I also dislike the fact that it always suggests keeping the outermost `unsafe`.
E.g. for
```rs
fn granularity() {
unsafe {
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
I prefer if `rustc` suggests removing the more-course outer-level `unsafe`
instead of the fine-grained inner `unsafe` blocks, which it currently does on nightly:
```
warning: unnecessary `unsafe` block
--> src/main.rs:10:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:11:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsafe { unsf() }
11 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
warning: unnecessary `unsafe` block
--> src/main.rs:12:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
12 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
```
--------------------------------------------------------------------------------
Needless to say, this PR addresses all these points. For context, as far as my
understanding goes, the main advantage of skipping inner unsafe blocks was that
a test case like
```rs
fn top_level_used() {
unsafe {
unsf();
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
should generate some warning because there’s redundant nested `unsafe`, however
every single `unsafe` block _does_ contain some statement that uses it. Of course
this PR doesn’t aim change the warnings on this kind of code example, because
the current behavior, warning on all the inner `unsafe` blocks, makes sense in this case.
As mentioned, during MIR building all the unsafe blocks *are* kept now, and usage
is attributed to them. The way to still generate a warning like
```
warning: unnecessary `unsafe` block
--> src/main.rs:11:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
10 | unsf();
11 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
|
= note: `#[warn(unused_unsafe)]` on by default
warning: unnecessary `unsafe` block
--> src/main.rs:12:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
12 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
warning: unnecessary `unsafe` block
--> src/main.rs:13:9
|
9 | unsafe {
| ------ because it's nested under this `unsafe` block
...
13 | unsafe { unsf() }
| ^^^^^^ unnecessary `unsafe` block
```
in this case is by emitting a `unused_unsafe` warning for all of the `unsafe`
blocks that are _within a **used** unsafe block_.
The previous code had a little HIR traversal already anyways to collect a set of
all the unsafe blocks (in order to afterwards determine which ones are unused
afterwards). This PR uses such a traversal to do additional things including logic
like _always_ warn for an `unsafe` block that’s inside of another **used**
unsafe block. The traversal is expanded to include nested closures in the same go,
this simplifies a lot of things.
The whole logic around `unsafe_op_in_unsafe_fn` is a little complicated, there’s
some test cases of corner-cases in this PR. (The implementation involves
differentiating between whether a used unsafe block was used exclusively by
operations where `allow(unsafe_op_in_unsafe_fn)` was active.) The main goal was
to make sure that code should compile successfully if all the `unused_unsafe`-warnings
are addressed _simultaneously_ (by removing the respective `unsafe` blocks)
no matter how complicated the patterns of `unsafe_op_in_unsafe_fn` being
disallowed and allowed throughout the function are.
--------------------------------------------------------------------------------
One noteworthy design decision I took here: An `unsafe` block
with `allow(unused_unsafe)` **is considered used** for the purposes of
linting about redundant contained unsafe blocks. So while
```rs
fn granularity() {
unsafe { //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() }
unsafe { unsf() }
unsafe { unsf() }
}
}
```
warns for the outer `unsafe` block,
```rs
fn top_level_ignored() {
#[allow(unused_unsafe)]
unsafe {
#[deny(unused_unsafe)]
{
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block
}
}
}
```
warns on the inner ones.
Move ty::print methods to Drop-based scope guards
Primary goal is reducing codegen of the TLS access for each closure, which shaves ~3 seconds of bootstrap time over rustc as a whole.
This was largely just caching the shard value at this point, which is not
particularly useful -- in the use sites the key was being hashed nearby anyway.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Suggest `impl Trait` return type when incorrectly using a generic return type
Address #85991
When there is a type mismatch error and the return type is generic, and that generic parameter is not used in the function parameters, suggest replacing that generic with the `impl Trait` syntax.
r? `@estebank`
Address #85991
Suggest the `impl Trait` return type syntax if the user tried to return a generic parameter and we get a type mismatch
The suggestion is not emitted if the param appears in the function parameters, and only get the bounds that actually involve `T: ` directly
It also checks whether the generic param is contained in any where bound (where it isn't the self type), and if one is found (like `Option<T>: Send`), it is not suggested.
This also adds `TyS::contains`, which recursively vistits the type and looks if the other type is contained anywhere
Suggest copying trait associated type bounds on lifetime error
Closes#92033
Kind of the most simple suggestion to make - we don't try to be fancy. Turns out, it's still pretty useful (the couple existing tests that trigger this error end up fixed - for this error - upon applying the fix).
r? ``@estebank``
cc ``@nikomatsakis``
Improve comments about type folding/visiting.
I have found this code confusing for years. I've always roughly
understood it, but never exactly. I just made my fourth(?) attempt and
finally cracked it.
This commit improves the comments. In particular, it explicitly
describes how you can't do a custom fold/visit of any type; there are
actually a handful of "types of interest" (e.g. `Ty`, `Predicate`,
`Region`, `Const`) that can be custom folded/visted, and all other types
just get a generic traversal. I think this was the part that eluded me
on all my prior attempts at understanding.
The commit also updates comments to account for some newer changes such
as the fallible/infallible folding distinction, does some minor
reorderings, and moves one `impl` to a better place.
r? `@BoxyUwU`
I have found this code confusing for years. I've always roughly
understood it, but never exactly. I just made my fourth(?) attempt and
finally cracked it.
This commit improves the comments. In particular, it explicitly
describes how you can't do a custom fold/visit of any type; there are
actually a handful of "types of interest" (e.g. `Ty`, `Predicate`,
`Region`, `Const`) that can be custom folded/visted, and all other types
just get a generic traversal. I think this was the part that eluded me
on all my prior attempts at understanding.
The commit also updates comments to account for some newer changes such
as the fallible/infallible folding distinction, does some minor
reorderings, and moves one `impl` to a better place.
Fix inconsistent symbol mangling with -Zverbose
Always skip arguments that are the defaults of their respective
parameters, to avoid generating inconsistent symbols for builds
with `-Zverbose` flag and without it.
Support pretty printing of invalid constants
Make it possible to pretty print invalid constants by introducing a
fallible variant of `destructure_const` and falling back to debug
formatting when it fails.
Closes#93688.
Treat static refs as `mir::ConstantKind::Val`
With the upcoming introduction of Valtrees we want to treat more values as `mir::ConstantKind::Val` directly.
r? `@lcnr`
cc `@oli-obk`
Always skip arguments that are the defaults of their respective
parameters, to avoid generating inconsistent symbols for builds
with `-Zverbose` flag and without it.
Make it possible to pretty print invalid constants by introducing a
fallible variant of `destructure_const` and falling back to debug
formatting when it fails.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
The variant names are exported, so we can use them directly (possibly
with a `ty::` qualifier). Lots of places already do this, this commit
just increases consistency.
Specifically, change `Region` from this:
```
pub type Region<'tcx> = &'tcx RegionKind;
```
to this:
```
pub struct Region<'tcx>(&'tcx Interned<RegionKind>);
```
This now matches `Ty` and `Predicate` more closely.
Things to note
- Regions have always been interned, but we haven't been using pointer-based
`Eq` and `Hash`. This is now happening.
- I chose to impl `Deref` for `Region` because it makes pattern matching a lot
nicer, and `Region` can be viewed as just a smart wrapper for `RegionKind`.
- Various methods are moved from `RegionKind` to `Region`.
- There is a lot of tedious sigil changes.
- A couple of types like `HighlightBuilder`, `RegionHighlightMode` now have a
`'tcx` lifetime because they hold a `Ty<'tcx>`, so they can call `mk_region`.
- A couple of test outputs change slightly, I'm not sure why, but the new
outputs are a little better.
Specifically, change `Ty` from this:
```
pub struct Predicate<'tcx> { inner: &'tcx PredicateInner<'tcx> }
```
to this:
```
pub struct Predicate<'tcx>(&'tcx Interned<PredicateS<'tcx>>)
```
where `PredicateInner` is renamed as `PredicateS`.
This (plus a few other minor changes) makes the parallels with `Ty` and
`TyS` much clearer, and makes the uniqueness more explicit.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.