It matches the type, and a noun makes more sense than a verb.
The `output_filenames` function still uses a profiling label named
`prepare_outputs`, but I think that makes sense as a verb and can be
left unchanged.
This commit adds warnings if a user supplies several diagnostic options
where we can only apply one of them. We explicitly warn about ignored
options here. In addition a small test for these warnings is added.
avoid exhaustive i16 test in Miri
https://github.com/rust-lang/rust/pull/116301 added a test that is way too slow to be running in Miri. So let's only test a few hopefully representative cases.
bootstrap: simplify setting unstable-options for tools
Previously, we unconditionally(instead of `if path == "src/tools/clippy" || ..`) set this (to prevent recompiling tools between `x check $tool` and '` check $another_tool` executions) specifically for tools in the `x check` step. This PR relocates that logic to `fn prepare_tool_cargo`, making it step-agnostic.
Fixes#116538Fixes#117983
Subtree sync for rustc_codegen_cranelift
The main highlights this time are support for AES and SHA256 crypto intrinsics on x86_64 by lowering to inline asm.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
When writing a pattern to collect multiple entries of a slice in a
single binding, it is easy to misremember or typo the appropriate syntax
to do so, instead writing the experimental `X..` pattern syntax. When we
encounter a resolve error because `X` isn't available, we suggest
`X @ ..` as an alternative.
```
error[E0425]: cannot find value `rest` in this scope
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:13
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^ not found in this scope
|
help: if you meant to collect the rest of the slice in `rest`, use the at operator
|
LL | [1, rest @ ..] => println!("{rest:?}"),
| +
```
Fix#88404.
bootstrap: only show PGO warnings when verbose
Building rustc with `--rust-profile-use` is currently dumping a lot of
warnings of "no profile data available for function" from `rustc_smir`
and `stable_mir`. These simply aren't exercised by the current profile-
gathering steps, but that's to be expected for new or experimental
functionality. I think for most people, these warnings will be just
noise, so it makes sense to only have them in verbose builds.
Better handle type errors involving `Self` literals
When encountering a type error involving a `Self` literal, point at the self type of the enclosing `impl` and suggest using the actual type name instead.
```
error[E0308]: mismatched types
--> $DIR/struct-path-self-type-mismatch.rs:13:9
|
LL | impl<T> Foo<T> {
| - ------ this is the type of the `Self` literal
| |
| found type parameter
LL | fn new<U>(u: U) -> Foo<U> {
| - ------ expected `Foo<U>` because of return type
| |
| expected type parameter
LL | / Self {
LL | |
LL | | inner: u
LL | |
LL | | }
| |_________^ expected `Foo<U>`, found `Foo<T>`
|
= note: expected struct `Foo<U>`
found struct `Foo<T>`
= note: a type parameter was expected, but a different one was found; you might be missing a type parameter or trait bound
= note: for more information, visit https://doc.rust-lang.org/book/ch10-02-traits.html#traits-as-parameters
help: use the type name directly
|
LL | Foo::<U> {
| ~~~~~~~~
```
Fix#76086.
This was made possible by the removal of plugin support, which
simplified lint store creation.
This simplifies the places in rustc and rustdoc that call
`describe_lints`, which are early on. The lint store is now built before
those places, so they don't have to create their own lint store for
temporary use, they can just use the main one.
Fixed the `has_body()` function operator. Before that, this function was
returning false for all shims.
Change resolve_drop_in_place() to also return an instance for empty
shims, since they may still be required for vtable construction.
Add more APIs to retrieve information about types, and add more instance
resolution options.
Make `Instance::body()` return an Option<Body>, since not every instance
might have an available body. For example, foreign instances, virtual
instances, dependencies.